(excerpt For ECE660, Fall 1999) - F.S.Hill, Jr.

CHAPTER 1. Introduction to Computer Graphics

" Begin a the beginning,” theKingsaid gravely,
“and go ortill you cometo the end; then stop.”
Lewis Carr oll, Alicein Wonderland

The machine does not isolate
the man from the great
problems of nature

but plunges him nore deeply
into them

Antoine de Saint-Exupéry

“ Any sufficiently advanced
techndogy isindstingushabe from magic.”
Arthur C. Clarke

1.1 What is computer graphics?
Goad question. People use the term “computer graphics’ to mean different thingsin different contexts.
Most simply, computer graphics are pictures that are generated by a computer. Everywhere you look
today there are examples to be found, espedally in magaznes and on television. This bodk was typeset

using a computer: every character (even thisone: G) was “drawn” from alibrary of character shapes
stored in computer memory. Books and magaznes abound with pictures created on a computer. Some
look so natural you can't distinguish them from photographs of a“real” scene. Others have an artificial or
surreal feding, intentionally fashioned to achieve some visual effed. And movies today often show scenes
that never existed, but were arefull y crafted by computer, mixing the real and the imagined.

“Computer graphics’ also refersto the tods used to make such pictures. The purpose of thisbod isto
show what the tod's are and how to apply them. There are bath hardware and software tods. Hardware
todsinclude video monitors and printers that display graphics, as well asinput devices like a mouse or
trackball that let a user point to items and draw figures. The mmputer itself, of course, is ahardware tod,
along with its gpedal circuitry to facilit ate graphical display or image apture.

Asfor software tods, you are already familiar with the usual ones. the operating system, editor, compil er, and
debuggger, that are found in any programming environment. For graphics there must also be a coll edion of
“graphicsroutines’ that producethe pictures themselves. For example, all graphics libraries have functionsto

draw asimplelineor circle (or characters sich as G). Some go well beyond this, containing functions to
draw and manage windows with pull-down menus and dialog baxes, or to set up a“camera” in athree
dimensional coardinate system and to make “snapshots’ of objeds gored in some data base.

In this bodk we show how to write programs that utili ze graphics libraries, and how to add functionality to
them. Not too long ago, programmers were mmpell ed to use highly “device dependent” libraries,

designed for use on one spedfic computer system with one spedfic display devicetype. This made it very
difficult to “port” a program to another system, or to use it with another device usually the programmer
had to make substantial changes to the program to get it to work, and the processwas time-consuming
and highly error-prone. Happil y the situation is far better today. Deviceindependent graphicslibraries are
now avail able that all ow the programmer to use a common set of functions within an appli cation, and to
run the same appli cation on a variety of systems and displays. OpenGL is sich alibrary, and serves asthe
main tod we usein this bodk. The OpenGL way of creating graphicsis used widdly in bath universities
and industry. We begin a detail ed dscusson of it in Chapter 2.

Hill - Chapter 1 /9/99 agpl

Finally, “computer graphics’ often means the whole field of study that involves these tods and the
pictures they produce (Soit’s also used in the singular form: “computer graphicsis...”). Thefield is often
acknowledged to have started in the early 1960 s with Ivan Sutherland’s pioneeing doctoral thesisat MIT
on ‘Sketchpad' [ref]. Interest in graphics grew quickly, bath in academia and industry, and there were
rapid advances in display technology and in the algorithms used to manage pictorial information. The
spedal interest group in graphics, SIGGRAPH?, was formed in 1969 and is very active today around the
world. (The must-not-missannual SIGGRAPH meding now attracts 30,000 participants ayear.) More
can be found at http://www.siggraph.org. Today there are hundreds of companies around the world having
some asped of computer graphics as their main source of revenue, and the subjed of computer graphicsis
taught in most computer scienceor eledrical engineaing departments.

Computer graphicsisavery appealing field of study. You learn to write programsthat create pictures,
rather than streams of text or numbers. Humans respond readily to pictorial information, and are able to
absorb much more information from pictures than from a coll edion of numbers. Our eye-brain systems
are highly attuned to recognizing visual patterns. Reading text is of course one form of pattern
reaognition: we instantly recognize daracter shapes, form them into words, and interpret their meaning.
But we are even more acute when glancing at a picture. What might be an inscrutable blather of numbers
when presented as text becomes an instantly recognizable shape or pattern when presented graphically.
The amount of information in a picture an be enormous. We not only recgnize what’s“in it”, but also
glean aworld of information from its subtle detail s and texture

People study computer graphics for many reasons. Some just want a better set of tods for plotting curves
and presenting the data they encounter in their other studies or work. Some want to write computer-
animated games, whil e others are looking for a new medium for artistic expresson. Everyone wantsto be
more productive, and to communicate ideas better, and computer graphics can be a great help.

Thereisasothe “input” side. A program generates output — pictures or otherwise — from a combination
of the algorithms exeauted in the program and the data the user inputs to the program. Some programs
accept input crudely through characters and numbers typed at the keyboard. Graphics program, on the
other hand, emphasize more famili ar types of input: the movement of a mouse on a desktop, the strokes of
apen on adrawing tablet, or the motion of the user’ s head and handsin a virtual reality setting. We
examine many techniques of “interactive omputer graphics’ in this bodk; that is, we mmbine the
techniques of natural user input with those that produce pictorial output.

(Sedion 1.2 on uses of Computer Graphics deleted.)

1.3. Elements of Pictures Created in Computer Graphics.
What makes up a computer drawn picture?The basic objeds out of which such pictures are mmposed are
called output primitives. One useful categorization of theseis:
- polylines
text
fill ed regions
raster images

We will seethat these types overlap somewhat, but this terminology provides a good starting point. We
describe each type of primitivein turn, and hint at typical software routines that are used to draw it. More
detail on thesetodsisgiven in later chapters, of course. We also discussthe various attributes of each
output primitive. The attributes of a graphic primitive are the dharacteristics that affed how it appears,
such as color and thickness

! SIGGRAPH isa Spedal Interest Groupin the ACM: the Assciation for Computing Machinery.

Hill - Chapter 1 /9/99 agp?2

1.3.1. Polylines.

A palylineis aconneded sequence of straight lines. Each of the examplesin Figure 1.8 contain several
polylines. @). one palyline extends from the nose of the dinosaur to itstail; the plot of the mathematical
function isa single polyline, and the “wireframe” picture of a chesspawn contains many polyli nes that
outlineits sape.

Figure 1.8. @). a polyline drawing of a dinosaur (courtesy of Susan Verbed),
b). aplot of a mathematical function,
¢). awireframe rendering of a 3D objed.

Note that a polyline @n appear as a smoath curve. Figure 1.9 shows a blow-up of a curve revealing its
underlying short line segments. The gye blends them into an apparently smoath curve.

blow-up

e

Figure 1.9. A curved line made up of straight line segments.

Pictures made up of polylines are sometimes call ed line drawings. Some devices, like a pen plotter, are
spedfically designed to produceline drawings.

The simplest polyline is a single straight line segment. A line segment is edfied by its two endpoints,
say (Xg, Y1) and (X, Y2). A drawing routine for aline might look like drawLine(x1, y1, x2, y2);

It draws a line between the two endpoints. We develop such atod later, and show many examples of its
use. At that point we get spedfic about how coordinates like x; are represented (by integers or by real
numbers), and how colors can be represented in a program.

A spedal case arises when aline segment shrinksto asingle point, and is drawn asa“dot”. Even the
lowly dot has important usesin computer graphics, as we seelater. A dot might be programmed using the
routine drawDot(x1, y1);

When there are several linesin apolyline each oneis called an edge, and two adjacent lines med at a
vertex. The alges of a polyline @an crossone another, as a1 in the figures. Polylines are spedfied asa
list of vertices, each given by a coordinate pair:

(X0 Yo), (X1, Y1), (X2, Y2), +ees (X, Vi) (1.1

Hill - Chapter 1 /9/99 age3

For instance, the polyline shown in Figure 1.10is given by the sequence (2, 4), (2, 11), (6, 14), (12, 11),
(12, 4),(what are the remaining verticesin this polyline?.

10

5 10

Figure 1.10. An example polyline.
To draw polylineswe will need atod such as: drawPolyling(poly);

where the variable poly isalist containing al the endpoints (x;, y;) in some fashion. There are various
ways to capture alist in a program, each having its advantages and d sadvantages.

A polyline nead not form a closed figure, but if the first and last points are mnneded by an edge the
polylineis apolygon. If in addition no two edges cross the polygon is called smple. Figure 1.11 shows
some interesting polygons; only A and D are simple. Polygons are fundamental in computer graphics,
partly because they are so easy to define, and many drawing (rendering) algorithms have been findy tuned

to gperate optimall y with polygons. Polygons are described in depth in Chapter 3.
A).

).

B).

o) @
-

Figure 1.11. Examples of polygons..

E).

Attributes of Lines and Palylines.

Important attributes of a polyline are the wlor and thicknessof its edges, the manner in which the edges
are dashed, and the manner in which thick edges blend together at their endpoints. Typically all of the
edges of apalyline are given the same attributes.

Thefirst two polylinesin Figure 1.12 are distinguished by the line thicknessattribute. The third polyline
isdrawn using dashed segments.

= /71
A
L IVL IVL

Figure 1.12. Polylines with different attributes.

Hill - Chapter 1 /9/99 agp4

When alineisthick its ends have shapes, and a user must dedde how two adjacent edges “join”. Figure
1.13 shows various posshiliti es. Case @) shows “butt-end” lines that leave an unseanly “crack” at the
joint. Case b) shows rounded ends on the lines they join smoathly, part ¢) shows a mitered joint, and
part d) shows atrimmed mitered joint. Software tods are avail able in some packages to all ow the user to
choase the type of joining. Some methods are quite expensive cmmputationally.

ANNN

Figure 1.13. Some ways of joining two thick linesin a polyline.

The attributes of a polyline are sometimes st by calli ng routines auch as setDash(dash7) or
setLineThickness(thickness)

1.3.2. Text.

Some graphics devices have two distinct display modes, atext mode and a graphics mode. The text mode
isused for simpleinput/output of characters to control the operating system or edit the cde in a program.
Text displayed in this mode uses a built-in character generator. The tharacter generator is capable of
drawing alphabetic, numeric, and punctuation characters, and some sdedion of speda symbds sich as
©, 8, andA . Usually these characters can’t be placed arbitrarily on the display but only in some row and
column of abuilt-in grid.

A graphics mode offers aricher set of character shapes, and characters can be placed arhitrarily. Figure
1.14 shows me examples of text drawn graphically.

Big Text
"™ Shadow Text

NS A NG U

Rotateq TexOutlined text

SMALLCAPS

Figure 1.14. Some text drawn graphically.

A tod to draw a character string might look like: drawString(x, y, string); It placesthe
starting point of the string at position (X, y), and draws the sequence of characters dored in the variable
string

Text Attributes.
There are many text attributes, the most important of which are typeface, color, size, spacing, and
orientation.

Font. A font isa spedfic set of character shapes (atypeface) in a particular styleand size. Figure 1.15
shows various character styles.

Hill - Chapter 1 /9/99 age5

Helvetica
Helvetica bold

Times Helvetica italic
Times bold
Times italic
Courier
Courierbold
Couirieritalic

Figure 1.15. Some examples of fonts.

The shape of each character can be defined by a polyline (or more compli cated curves such as Bezier
curves — seeChapter 11), as shown in Figure 1.16a, or by an arrangement of dots, as $rown in part b.
Graphics packages come with a set of predefined fonts, and additi onal fonts can be purchased from
companies that spedalize in designing them.

|]
]
[]
[]
[]
[]
]
[]
[]
[]
[]
]
[]
[]
[]
[]
[]
[]
]
[]
[]
[B

Figure 1.16. A character shape defined by a polyline and by a pattern of dots.

Orientation of charactersand strings. Characters may also be drawn tilted along some diredion. Tilted
strings are often used to annotate parts of a graph. The graphic presentation of high-quality text isa
complex subjed. Bardy perceptible differencesin detail can change pleasing text into ugly text. Indeed,
we seeso much printed material in our daily lives that we subliminally exped characters to be displayed
with certain shapes, spacings, and subtle balances.

1.3.3. Filled Regions

Thefill ed region (sometimes called “fill area”) primitive is a shape fill ed with some @lor or pattern. The
boundary of afill ed region is often a polygon (although more mmplex regions are mnsidered in Chapter
4). Figure 1.17 shows sveral fill ed polygons. Polygon A isfill ed with its edges visible, whereas B isfill ed
with its border left undrawn. Polygons C and D are non-simple. Polygon D even contains polygonal holes.
Such shapes can till befill ed, but one must spedfy exactly what is meant by a polygon’s “interior”, since
filli ng algorithms differ depending on the definition. Algorithms for performing the filli ng action are
discussed in Chapter 10.

A B

Hill - Chapter 1 /9/99 agp6

Figure 1.17. Examples of fill ed Polygons.
To draw afill ed polygon one would use aroutine like: fillPolygon (poly, pattern);

wherethe variable poly holds the data for the polygon - the same kind of list as for a polyline - and the
variable pattern is ome description of the pattern to be used for filli ng. We discussdetail s for thisin
Chapter 4.

Figure 1.18 shows the use of fill ed regions to shade the different faces of a 3D oljed. Each polygonal
“face’ of the ohjea isfill ed with a certain shade of gray that corresponds to the amount of light that would
refled off that face This makes the objed appear to be bathed in light from a certain diredion. Shading of
3D objedsisdiscussd in Chapter 8.

Figure 1.18. Filli ng polygonal faces of 3D objeds to suggest proper shading.

The attributes of afill ed region include the attributes of the enclosing border, as well as the pattern and
color of thefilli ng.

1.3.4. Raster Image.

Figure 1.19a shows araster image of a chesspiece It is made up of many small “cell s, in different
shades of gray, as revealed in the blow-up shown in Figure 1.19b. Theindividual cdls are often call ed
“pixels’ (short for “picture dements’). Normally your eye @an't seetheindividual cdls; it blends them
together and synthesizes an overall picture.

Figure 1.19. a). A raster image of a chesspiece b). A blow-up of the image. (Raytracing courtesy of
Andrew Slater)

Hill - Chapter 1 /9/99 age’

A raster imageis gored in a computer as an array of numerical values. Thisarray isthought of as being
redangular, with a certain number of rows and a certain number of columns. Each numerical value
represents the value of the pixel stored there. The array asawholeis often called a“pixel map”. Theterm
“bitmap” is also used, (although some people think thisterm should be reserved for pixel maps wherein
each pixe isrepresented by a single bit, having the value 0 or 1.)

Figure 1.20 shows a simple example where afigureisrepresented by a17 by 19 array (17 rows by 19
columns) of cdlsin threeshades of gray. Suppose the threegray levels are encoded as the values 1, 2, and
7. Figure 1.20b shows the numerical values of the pixel map for the upper left 6 by 8 portion of theimage.

a). b).

NRNNNN
NRNDNNN
NRNDNNN
~N~NNDNNN
PR ~NNNN
PRR NN
NP AN
NP R RN

Figure 1.20. A simple figure represented as a bitmap.
How are raster images created? The threeprincipal sources are:

1). Hand designed images.

A designer figures out what values are needed for each cdl, and types them into memory. Sometimes a
paint program can be used to help automate this: the designer can draw and manipulate various
graphical shapes, viewing what has been made so far. When satisfied, the designer storesthe result in
afile. Theicon above was created this way.

2). Computed Images.

An agorithm isused to “render” a scene, which might be modeled abstractly in computer memory. Asa
simple example, a scene might consist of a single yell ow smoath sphereill uminated by alight sourcethat
emanates orange light. The model contains descriptions of the size and positi on of the sphere, the
placement of the light source, and a description of the hypothetical “camera” that isto “take the picture’.
The raster image plays therole of the film in the amera. In order to create the raster image, an
algorithm must calculate the wlor of light that fall s on each pixd of theimage in the amera. Thisisthe
way in which ray traced images such asthe cesspiecein Figure 1.20 are aeated; seeChapter 16.

Raster images also frequently contain images of straight lines. A lineis created in an image by setting
the proper pixelsto theline's color. But it can require quite a bit of computation to determine the
sequenceof pixelsthat “best fit” the ideal li ne between two given end points. Bresenham's algorithm
(seeChapter 2) provides a very efficient approach to determining these pixds.

Figure 1.21a shows araster image featuring several straight lines, a circular arc, and some text
characters. Figure 1.21b shows a close-up of the raster image in order to expose the individual pixels
that are “on” thelines. For ahorizontal or vertical li ne the black square pixels line up nicdy forming
asharp line. But for the other lines and the arc the “best” colledion of pixels produces only an
approximation to the “true’ line desired. In addition, the result showsthe dread “jagges’ that have a
relentlesspresencein raster images.

Hill - Chapter 1 /9/99 agp8

3
e,

Teat Patemn TE S't

Figure 1.21. a). acalledion of lines and text. b). Blow-up of part a, having “jaggies’.

3). Scanned images.

A photograph or television image an be digiti zed as described abowe. In effed agrid is placed over the
original image, and at each grid point the digiti zer reads into memory the “dosest” color in its repertoire.
The bitmap isthen stored in afile for later use. The image of the kitten in Figure 1.22 was formed this way.

-t

Figure 1.22. A ned image.

Becuse raster images are smply arrays of numbers, they can be subsequently processed to goad effed by
acomputer. For instance Figure 1.23 shows threesuccessve enlargements of the kitten image abowe.
These are formed by “pixel replication” (discussed in detail in Chapter 10). Each pixel has been repli cated
threetimesin each diredion in part a; by six timesin part b, and by 12 timesin part c.

Hill - Chapter 1 19799 agp9

Figure 1.23. Threesuccessve blow-ups of the kitten image. a). threetimes enlargement, b). six times
enlargement.

Figure 1.23c. Twelve times enlargement.

As another example, one often neals to “clean up’ a scanned image, for instanceto remove speds of
noise or to reveal important detail s. Figure 1.24a shows the kitten image with gray levels altered to
increase the mntrast and make detail s more evident, and Figure 1.24b shows the dfed of “edge
enhancement”, achieved by a form of filt ering the image.

Figure 1.24. Examples of image enhancement

Figure 1.25 shows two exampl es of editing an image to accomplish some visual effed. Part a shows the
kitten image “embossed”, and part b showsiit distorted geometrically.

Hill - Chapter 1 19799 agp10

igure 15. amples alering image for visua effed.
1.3.5. Representation of gray shades and color for Raster Images
An important asped of araster image isthe manner in which the various colors or shades of gray are
represented in the bitmap. We briefly survey the most common methods here.

1.3.5.1. Gray-scale Raster Images.

If there are only two pixel valuesin araster imageit is called bi-level. Figure 1.26a shows a simple bi-
level image, representing a familiar arrow-shaped cursor frequently seen on a computer screen. Its raster
consists of 16 rows of 8 pixels each. Figure 1.26b shows the bitmap of thisimage as an array of 1'sand
0's. Theimage shown at the left associates black with a 1 and white with a 0, but this association might
just as easily be reversed. Sinceone hit of information is aufficient to distinguish two values, a bil evel
imageis often referred to asa 1 bit per pixel” image.

a). | b).

=l =ll=]l=1l=] N N R e
(=) (o) (=] (=] (=] (S8 (=] [l Dl Ll Ll Ll K Ll Ll (=)
[=]l=] =] =1l=] (=] = I I e e e =) =
[=]ll=]=1=1=] =1 MNE N ===
ool lolr |k lr|rr|r]rlolololo
O lo|r|~ | |r|olo]r||r|lolo|lo|lo|o
olo|r|r|lololo|o|r |k |ololo|olo|o
(=] (=] (=] (=] [=] (=] (=] [=] ¥ (=] [=] (=] (=) (=] =] [=}

Figure 1.26. A bilevel image of a cursor, and its bitmap.

When the pixelsin a gray-scale image take on more than two values, each pixel requires more than a
single bit to represent it in memory. Gray-scale images are often classfied in terms of their pixel depth,
the number of bits needed to represent their gray levels. Sincean n-hit quantity has 2" posshble values,
there @n be 2" gray levelsin an image with pixe depth n. The most common values are:

2 hitg/pixel produce4 gray levels

4 bitg/pixel produce 16 gay leves
8 hits/pixel produce 256 gay leves

Hill - Chapter 1 19199 agp1l

Figure 1.27 shows 16 gay levels ranging from black to white. Each of the sixteen possble pixd valuesis
asciated with a binary 4-tuple such as01100r 111Q Here 0000represents black, 1111 anotes white,
and the other 14 values represent gray levelsin between.
0000 0001 0010 1110

N NS

| |
black white
Figure 1.27. Sixteen levels of gray.

brightnesg
>

Many gray scale images® employ 256 gay levels, sincethis usually gives a scanned image acceptable
quality. Each pixe is represented by some 8-hit values such as01101110The pixd value usually
represents "brightness', where black is represented by 0000000Qwhiteby 11111111 and a medium gray
by 10000000Figure 1.23 seen earlier uses 256 gay levels.

Effed of Pixel depth: Gray-scale Quantization.

Sometimes an image that initiall y uses 8 bits per pixel isaltered so that fewer bits per pixel are used. This
might occur if a particular display deviceisincapable of displaying so many levels, or if the full image
takes up too much memory. Figures 1.28 through 1.30 show the dfed on the kitten image if pixe values
are simply truncated to fewer bits. The lossin fiddlity is hardly noticeable for the imagesin Figure 1.28,
which use 6 and 5 hits/pixel (providing 64and 32 dfferent shades of gray, respedively).

Figure 1.28. The image reduced to 6 bits/pixel and 5 bits/pixd.

But thereis a significant lossin quality in the images of Figure 1.29. Part a shows the dfed of truncating
each pixe valueto 4 hits, so there are only 16 posshle shades of gray. For example, pixel value 01110100
isreplaced with 0111 In part b the @ght posshle levels of gray are dearly visible. Note that some areas of
the figure that show gradations of gray in the original now show a“lake” of uniform gray. Thisis often
called banding, sinceareas that should show a gradual shift in the gray level instead show a sequence of
uniform gray “bands’.

2 Thousands are avail able on the Internet, frequently as Gif, Jpeg, or Tiff images.

Hill - Chapter 1 /9/99 agpl2

Figure 1.29. Theimage reduced to 4 bits/pixel and to 3 bits/pixel.

Figure 1.30 shows the ases of 2 and 1 bitsg/pixel. In part athe four levels are dearly visible and thereisa
great deal of banding. In part b thereis only black and white and much of the original image information

has been lost. In Chapter 10 we show techniques auch as dithering for improving the quality of an image

when two few bits are used for each pixel.

Figure 1.30. Theimage reduced to 2 bits/pixel and 1 bit/pixel.

1.3.5.2. Color Raster Images.

Color images are desirable because they match our daily experiencemore dosely than do gray-scale
images. Color raster images have become more wmmon in recent years as the st of high quality color
displays has come down. The st of scanners that digitize wlor photos has also become reasonable.

Each pixel in acolor image hasa“color value’, anumerical value that somehow represents a color. There
are a number of ways to associate numbers and colors (seeChapter 12 for a detail ed dscusson), but one
of the most common is to describe a color as a combination of amounts of red, green, and blue light. Each
pixd valueisa3-tuple, such as (23, 14, 51), that prescribes the intensities of the red, green, and blue
light componentsin that order.

Hill - Chapter 1 /9/99 agp13

The number of bits used to represent the wlor of each pixel isoften called its color depth. Each valuein
the (red, green, blue) 3-tuple has a certain number of bits, and the clor depth isthe sum of these values.
A color depth of 3 all ows one hit for each component. For instancethe pixel value (0, 1, 1) meansthat the
red component is“off”, but bath green and blue are “on”. In most displays the cntributions from each
component are added together (seeChapter 12 for exceptions such asin printing), so (0,1,1) would
represent the additi on of green and blue light, which is percdved as cyan. Since exch component can be
on or off there are @ght posshle mlors, astabulated in Figure 1.31. As expeded, equal amounts of red,
green, and blue, (1, 1, 1), producewhite.

color value displayed
0,0,0 black
0,01 blue
0,1,0 green
01,1 cyan
1,0,0 red

1,01 magenta
1,10 yellow
1,11 white

Figure 1.31. A common correspondence between color value and perceved color.

A color depth of 3 rardy offers enough predsion for spedfying the value of each component, so larger
color depths are used. Because a byteis such a natural quantity to manipulate on a computer, many
images have a color depth of eight. Each pixel then has one of 256 pssble wlors. A smple approach
alows 3 hits for each of the red and the green components, and 2 bits for the blue mmponent. But more
commonly the association of each byte value to a particular color is more compli cated, and uses a “color
look-up” table, as discussed in the next sedion.

The highest quality images, known astrue mlor images, have a color depth of 24, and so use a byte for
each component. This sans to achieve as good color reproduction as the e/e @an perceve: more bits
don’'t improve an image. But such images require agreat deal of memory: threebytes for every pixd. A
high quality image of 1080by 1024 pxds requires over threemilli on bytes!

Plates 19 through 21 show some lor raster images having dfferent color depths. Plate 19 shows a full
color image with a color depth of 24 hits. Plate 20 shows the degradation this image suffers when the
color depth isreduced to 8 by simply truncating the red and green components to 3 hits each, and the blue
component to 2 bits. Plate 21 also has a color depth of 8, so its pixels contain only 256 colors, but the 256
particular colors used have been carefully chosen for best reproduction. Methods to do this are discussd
in Chapter 12.

| author-suppied |

Plate 19. Image with 24 bits/pixel.
| author-suppied |

Plate 20. Image with 3 bitsfor red and green pixels, and two htsfor blue pixds.
| author-suppied |

Plate 1.21. Image with 256 carefully chosen colors.

1.4. Graphics Display Devices
We present an overview of some hardware devices that are used to display computer graphics. The devices
include video monitors, plotters, and printers. A rich variety of graphics displays have been devel oped
over thelast thirty years, and new ones are appearing all thetime. The quest is to display pictures of ever
higher quality, that reaeate more faithfully what isin the artist’s or engineg’ s mind. In this dion we
look over the types of pictures that are being produced today, how they are being used, and the kinds of
devices used to display them. In the processwe lodk at ways to measure the “quality” of an image, and see
how different kinds of display devices measure up.

Hill - Chapter 1 /9/99 agp 14

1.4.1. Line Drawing Displays.

Some devices are naturally line-drawers. Because of the technology of the time, most early computer
graphics were generated by line-drawing devices. The dassc exampleisthe pen plotter. A pen plotter
moves a pen invisibly over a pieceof paper to some spot that is gpedfied by the cmmputer, puts the pen
down, and then sweeps the pen acrossto another spat, leaving atrail of ink of some @lor. Some plotters
have a carousd that holds ®veral pens which the program can exchange automatically in order to draw in
different colors. Usually the choiceof avail able alorsisvery limited: a separate pen is used for each
color. The “quality” of aline-drawing is related to the predsion with which the pen is positioned, and the
sharpnessof the lines drawn.

There are various kinds of pen plotters. Flatbed plotters move the pen in two dimensions over a
stationary shed of paper. Drum plotters move the paper back and forth on a drum to provide one
diredion of motion, whil e the pen moves back and forth at the top of the drum to provide the other
diredion.

There are also video displays called “vedor”, “random-scan”, or “calli graphic” displays, that produce
line-drawings. They haveinternal circuitry spedally designed to sweep an e edronic beam from point to
point acrossthe face of a cathode ray tube, leaving a glowing trail .

Figure 1.32 shows an example of a vedor display, used by a flight controll er to track the positions of
many aircraft. Since exch line segment to be displayed takes only alittl e data (two end points and perhaps
acolor), vedor displays can draw a picture very rapidly (hundreds of thousands of vedors per secnd).

| author-suppied
Figure 1.32. Example of avedor display (Courtesy Evans & Sutherland)

Vedor displays, however, cannot show smoathly shaded regions or scanned images. Region filling is
usualy simulated by crosshatching with different line patterns, as siggested in Figure 1.33. Today raster
displays have largely replaced vedor displays except in very spedalized applications.

Figure 1.33. Crosshatching to simulate filli ng a region.

1.4.2. Raster Displays.

Most displays used today for computer graphics are raster displays. The most familiar raster displays are
the video monitor conneded to personal computers and workstations (seeFigure 1.344), and the flat
panel display common to portable personal computers (seeFigure 1.34b). Other common examples
produce hard copy of an image: the laser printer, dot matrix printer, ink jet plotter, and film

recor der. We describe the most important of these bel ow.

author-suppied |

Figure 1.34. a). video monitors on PC, b). flat panel display.

Raster devices have a display surface on which theimageis presented. The display surfacehas a certain
number of pixelsthat it can show, such as 480rows, where each row contains 640 pxes. So this display
surface @n show 480 x 640 307,000 pxds smultaneoudy. All such displays have a built-in coordinate
system that associates a given pixel in an image with a given physical position on the display surface
Figure 1.35 shows an example. Here the horizontal coordinate sx increases from left to right, and the

Hill - Chapter 1 /9/99 agp 15

vertical coordinate sy increases from top to bdatom. This“upside-down” coordinate system istypical of
raster devices.

N>

v

Figure 1.35. The built-in coordinate system for the surface of araster display.

Raster displays are always conneded one way or another to aframe buffer, aregion of memory
sufficiently large to hold all of the pixd values for the display (i.e. to haold the bitmap). The frame buffer
may be physical memory on-baoard the display, or it may residein the host computer. For example, a
graphics card that isinstalled in a personal computer actually houses the memory required for the frame
buffer.

Figure 1.36 suggests how an imageis created and displayed. The graphics program is dored in system
memory and is exeated instruction by instruction by the central processng unit (CPU). The program
computes appropriate values for each pixel in the desired image and loads them into the frame buffer.
(Thisisthe part we focus on later when it comes to programming: building tods that write the “corred”
pixel valuesinto the frame buffer.) A “scan controller” takes care of the actual display process It runs
autonomously (rather than under program contral), and does the same thing pixel after pixd. It causesthe
frame buffer to “send” each pixel through a converter to the appropriate physical spot on the display
surface The mnverter takes a pixel value such as 0100101 1and converts it to the @rresponding quantity
that produces a spot of color on the display.

scan
/ controller\‘
System | frame I
CPU myemory buffer |1 I>
: converter display
[| surface
system bus

Figure 1.36. Block diagram of a computer with raster display.

The scanning process

Figure 1.37 provides more detail on the scanning process The main issue is how each pixd valuein the
frame buffer is“sent” to the right place on the display surface Think of each of the pixelsin the frame
buffer as having a two-dimensional address(x, y). For address(136, 252), for instance, thereis a spedfic
memory location that holds the pixel value. Call it meni136][252.

Hill - Chapter 1 /9/99 agp 16

X X .
i geometric
scan L
logical y controller y position
addres
| 0 1 > X
®
—> —>
pixel at address [x,y] spot at (x,y)
p convert pixel 479N=
frame buffer value to color v display surface
at (639, 479) y

Figure 1.37. Scanning out an image from the frame buffer to the display surface

The scan controll er sends logical address(136, 252) to the frame buffer, which emits the value
men136[252. The wontroller also smultaneously “addreses’ a physical (geometric) position (136, 252
on the display surface Position (136, 252) corresponds to a certain physical distanceof 136 wnits
horizontally, and 252 units vertically, from the upper left hand corner of the display surface Different
raster displays use different units.

The value menil36[257 is converted to a corresponding intensity or color in the @mnversion circuit, and
theintensity or color is ent to the proper physical position (136, 252) on the display surface

To scan out theimagein the entire frame buffer, every pixd valueisvisited once and its corresponding
spot on the display surfaceis “excited” with the proper intensity or color.

In some devices this sanning must be repeated many times per seand, in order to "refresh” the picture.
The video monitor to be described next is sich adevice

With these generaliti es laid down, welodk briefly at some spedfic raster devices, and seethe different
formsthat arise.

Video Monitors.
Video monitors are based on a CRT, or cathode-ray tube, similar to the display in atelevision set. Figure
1.38 adds ome detail s to the general description abowve for a system using a video monitor as the display
device In particular, the onversion processfrom pixel value to “spot of light” isill ustrated. The system
shown has a color depth of 6 bits; the frame buffer is sown as having six hit “planes’. Each pixel uses
one hit from each of the planes.

Hill - Chapter 1 /9/99 age 17

scan controlle

y
A
I,.|‘= I’ed ° y
/ . S /
spot
pixel >b|ﬁ+ / \
value glectron deflcti
DAC' eam eflection
gﬁfrpeer S guns coils
(6 planes)

Figure 1.38. Operation of a color video monitor display system.

Thered, green, and blue amponents of a pixel each use a pair of bits. These pairs are fed to threedigital-
to-analog converters (DAC's), which convert logical values like 01 into actual voltages. The
correspondence between digital input values and output voltagesis siown in Figure 1.39, where Max is
the largest voltage level the DAC can produce

input voltage/brightness
00 0 *Max
01 0333 *Max
10 0666 * Max
11 1 *Max

Figure 1.39. Input-output characteristic of a two-bit DAC.

Thethreevoltage levels drive three ‘guns’ inside the CRT, which in turn excite three ¢éedron beams with
intensiti es proportional to the voltages. The defledion coail s divert the threebeams they stimulate three
tiny phosphor dots at the proper place(x, y) on theinside of the cthode ray tube. Because of the phosphor
materials used, one dot glows red when stimulated, one glows green, and one glows blue. The dots are so
close together your eye sees one composite dot, and perceives a color that isthe sum of the three
component colors. Thus the cmposite dot can be madeto glow in atotal of 4 x 4 x 4= 64 dfferent
colors.

As described earlier the scan controll er addresses one pixel value menfix][y] in the frame buffer at the
sametimeit “addreses’ one position (x, y) on the face of the CRT by sending the proper signal to the
defledion coil s. Because the glow of a phosphor dot quickly fades when the stimulation is removed, a
CRT image must be refreshed rapidly (typically 60 times a seand) to prevent disturbing flicker. During
each “refresh interval” the scan controll er scans quickly through the entire frame buffer memory, sending
each pixe valueto its proper spot on the screen’s aurface

Scanning proceads row by row through the frame buffer, each row providing pixel values for one scanline
acrossthe face of the CRT. The order of scanning is usually |€ft to right along a scanline and from top to
batom by scanline. (Historians say this convention has given riseto terms li ke scanline, as well asthe
habit of numbering scanlines downward with O at the top, resulting in upside down coordinate systems.)

Some more expensive systems have a frame buffer that supports 24 danes of memory. Each of the DAC's

has eight input bits, so there are 256 levels of red, 256 of green, and 2560f blue, for atotal of 22 = 16
milli on colors.

Hill - Chapter 1 /9/99 agp 18

At the other extreme, there are monochr ome video displays, which display asingle wlor in different
intensities. A single DAC converts pixe valuesin the frame buffer to vdtage leves, which drive asingle
eedron beam gun. The CRT has only one type of phosphor so it can produce various intensiti es of only
one mlor. Notethat 6 planes of memory in the frame buffer gives 2° = 64 levels of gray.

The wlor display of Figure 1.39 has a fixed association with a displayed color. For instance, the pixe
value 001101sends 00 to the “red DAC”, 11to the “green DAC”, and 01to the “blue DAC", producing a
mix of bright green and dark blue — a bluish-green. Similarly, 110011is displayed as a bright magenta,
and 0000210as a medium bright blue.

1.4.3. Indexed Color and the LUT.

Some systems are built using an alternative method of associating pixel values with colors. They
use acolor lookup table (or LUT), which offers a programmable association between pixel
value and final color. Figure 1.40 shows a simple example. The wlor depth isagain six, but the
six bits dored in each pixd go through an intermediate step before they drivethe CRT. They are
used as an indexinto atable of 64 values, say LUT[0]...LUT[63]. (Why arethere exactly 64
entriesin thisLUT?) For instance, if a pixel valueis 39, the values gored in LUT[39] are used
to drive the DAC's, as opposed to having the bitsin the value 39 itsdf drive them. As shown
LUT[39] containsthe 15 bit value 01010 11001 1001@ive of these bits (0101Q are routed to
drive the “red DAC”, five others drive the “green DAC”, and the last five drive the “blue DAC".

LUT
63
2%'}2%‘;‘;?;2“ index 39 [o01010 1100f 10030
to LUT
H 39:'l> NN
% e N
2
1
0
5 5 5

Figure 1.40. A color display system that incorporatesa LUT.

Each of the LUT[] entries can be set under program control, using some system routine such
as setPalette() . For example, theingtruction: setPalette (39, 17, 25, 4);

would set the valuein LUT[39] to the fifteen bit quantity 10001 11001 0010@incel7is 10001
in binary, 25is11001, and 4is00100Q.

To make a particular pixel glow in thiscolor, say the pixel at location (x, y) = (479, 532), the
value 39is dored in the frame buffer, using drawDot () defined earlier:

drawDot(479, 532, 39); /I set pixel at (479, 532 to value 39

Each time the frame buffer is “scanned out” to the display, this pixel isread as value 39, which
causes the value stored in LUT[39] to be sent to the DAC's.

Hill - Chapter 1 /9/99 age 19

This programmability offers a great deal of flexibility in choosing colors, but of courseit comes
at aprice the program (or programmer) has to figure out which colorsto use! We mnsider this
further in Chapter 10.

What isthe potential of this g/stem for displaying colors? In the system of Figure 1.41 each entry
of the LUT consists of 15 hits, so each color can be set to cne of 2'° = 32K = 32,768 ssble
colors. The set of 2'° posshle wlors displayable by the system is call ed its palette, so we say this
display “has a palette of 32K colors’.

The problem isthat each pixel valueliesin therange0..63, and only 64 dfferent colors can be
stored in the LUT at onetime. Therefore this g/stem can display a maximum of 64 dfferent
colors at one time. “At onetime’ here means during one scan-out of the entire frame buffer —
something like 1/60-th of a seaond. The @ntents of the LUT are not changed in the middle of a
scan-out of theimage, so ane whole scan-out uses a fixed set of 64 palette wlors. Usually the
LUT contents remain fixed for many scan-outs, although a program can change the mntents of a
small LUT during the brief dormant period between two successve scan-outs.

In more general terms, suppose that a raster display system has a color depth of b bits (so there
are b bit planesin its frame buffer), and that each LUT entry isw bits wide. Then we have that:

The system can display 2V colors, any 2D at onetime.

Examples.

(1. A system with b = 8 bit planesand a LUT width w= 12 can display 4096colors, any 256 of
them at atime.

(2). A system with b = 8 bitplanes and a LUT width w= 24 can display 2** = 16,777,216colors,
any 256at atime.

(3). If b=12and w= 18, the system can display 256k= 262144 colors, 4096at atime.

Thereis no enforced relationship between the number of bit planes, b, and the width of the LUT,
w. Normally wis amultiple of 3, so the same number of bits (W/3) drives each of the three
DAC's. Also, b never excealsw, so the paletteis at least as large as the number of colors that
can be displayed at one time. (Why would you never design a system with w< b?)

Note that the LUT itself requires very littl e memory, only 20 words of w bits each. For example,
if b=12and w= 18thereareonly 9,216 bytes of storagein the LUT.

So what isthe motivation for having a LUT in araster display system? It isusually aneed to
reducethe st of memory. Increasing b increases ggnificantly the amount of memory needed
for the frame buffer, mainly because there are so many pixels. The tremendous amount of
memory nealed can add significantly to the cst of the overall system.

To compare the @sts of two systems, one with a LUT and one without, Figure 1.41 shows an

example of two 1024by 1280 pxel displays, (so each of them supports about 1.3 milli on pixds).
Both systems all ow colors to ke defined with a predsion of 24 bits, often called “true wlor”.

Hill - Chapter 1 /9/99 age 20

expensive: (frame buffer needs ~4 Mbyte)
24 bits/pixel

>_

D Neoh (ech Nee)

1.3 million pixels

inexpensive: (frame buffer needs ~ 1 Mbyte)

8 bits/pixel

5

8
1.3 million pixels >
8 <

Figure 1.41. Comparison of two raster display systems.

System #1 (expensive): Thefirst has a 24 hit/pixel frame buffer and no LUT, so each of its 1.3
milli on pixels can be set to any one of 2%* colors. Eight hits drive each of the DAC's. (The
number ‘8’ and the dash through the line into each DAC indicate the presence of eight bit lines
feading into the DAC.) The amount of memory required for the frame buffer hereis 1024 x 1280
X 24 bits which is almost 4 megabytes.

System #2 (inexpensive): The second has an 8 bit/pixd frame buffer along with a LUT, and the
LUT is 24 bits wide. The system can display 2** different colors, but only 256at atime. The
amount of memory required for the frame buffer hereis 1024 x 1280 x &vhich isabout 1
megabyte. (The LUT requires atrivial 768bytes of memory.) If memory costs a significant
amount per megabyte, this g/stem is much lessexpensive than system #1.

Putting a LUT in an inexpensive system attempts to compensate for the small number of different
pixel values posshle. The LUT all ows the programmer to create a full set of colors, even though
agiven image an contain only arestricted set of them.

Displayswith LUT’ s are ill quite mommon today because memory costs are till high. The
situation is changing rapidly, however, as memory prices plummet. Many reasonably priced
personal computers today have 24 hit frame buffers.

Practice Exercises.

1.4.1. Why not alwayshave a LUT? Sincea LUT isinexpensive, and offers the advantage of
flexibility, why not have a LUT even in a system with 24 bits per pixel?

1.4.2. Configure your own system. For each of the systems described below:

a). draw the drcuit diagram, similar to Figure 1.41;

b). Label the number of bits associated with the frame buffer, the DAC's, and the LUT (if
present);

¢). Calculate (in bytes) the amount of storage required for the frame buffer and the LUT (if
present):

i). b=15 no LUT;

ii). b=15 w=24;

iii).b=8,w=18,

iv). b=12 no LUT.

Hill - Chapter 1 /9/99 agp?1

1.5. Graphics Input Primitives and Devices.
Many input devices are avail able that |et the user control a computer. Whereas typing a command might
be awkward, it is natural to “point” to a particular ohjea displayed on the screen to make a choicefor the
next action.

You can lodk at an input devicein two ways. what it is, and what it does. Each deviceis physically some
pieceof machinery like a mouse, keyboard, or trackball. It fitsin the hand in a certain way and is natural
for the user to manipulate. It measures these manipulations and sends corresponding numerical
information back to the graphics program.

Wefirst look at what input devices do, by examining the kinds of data each sends to the program. We
then lodk at a number of input devicesin common use today.

1.5.1. Types of Input Graphics Primitives.

Each devicetransmits a particular kind of data (e.g. a number, a string of characters, or a position) to the
program. The different types of data ae alled input primitives. Two different physical devices may
transmit the same type of data, so logically they generate the same graphics primitives.

The important input primitives are:

String. The string “device’ isthe most familiar, producing a string of char acters and thus modeli ng the
action of a keyboard. When an appli cation requests a string, the program pauses whil e the user typesit in
foll owed by a termination character. The program then resumes with the string stored in memory.

Choice A choice devicereports a seledion from a fixed number of choices. The progranmer's model isa
bank of buttons, or a set of buttons on a mouse.

Valuator. A valuator produces areal value between 0.0 and 1.0, which can be used to fix the length of a
line, the speed of an action, or perhaps the size of a picture. The model in the programmer'smind isa
knobthat can be turned from 0 to 1 in smoath gradations.

Locator. A basic requirement in interactive graphicsisto all ow the user to point to a position on the
display. Thelocator input device performs this function, because it produces a coor dinate pair (x, y). The
user manipulates an input device (usually a mouse) in order to position a visible arsor to some spot and
then triggers the choice Thisreturnsto the appli cation the values of x and y, along with the trigger value.

Pick. The pick input deviceis used to identify a portion of a picture for further processng. Some graphics
packages all ow a picture to be defined in terms of segments, which are groups of related graphics. The
package provides tod's to define segments and to give them identifying names. When using pick (), the
user “points’ to a part of a picture with some physical input device, and the package figures out which
segment isbeing pointed to. pick() returns the name of the segment to the appli cation, enabling the
user to erase, move, or otherwise manipulate the segment.

The graphics workstation is initialized when an appli cation starts running: among other things each
logical input function is associated with one of theinstalled physical devices.

1.5.2. Types of Physical Input Devices.
Welodk at the other side of input devices: the physical machine that is conneaed to the personal
computer or workstation.

Keyboard. All workstations are ejuipped with a keyboard, which sends drings of charactersto the

appli cation upon request. Hence a keyboard is usually used to oliain astring device Some keyboerds
have arsor keys or function keys, which are often used to producechoice input primitives.

Hill - Chapter 1 /9/99 agp22

Buttons. Sometimes a separate bank of buttonsisinstall ed on a workstation. The user presss one of the
buttons to perform achoice input function.

Mouse. The mouse is perhaps the most familiar input deviceof all, asit is easy and comfortable to
operate. Asthe user dlides the mouse over the desktop, the mouse sends the dhangesin its position to the
workstation. Software within the workstation keeps track of the mouse's positi on and moves a graphics
cursor — asmall dot or cross— on the screen acoordingly. The mouse is most often used to perform a
locate or apick function. There are usually some buttons on the mouse that the user can pressto
trigger the action.

Tablet. Like amouse, atablet is used to generate locate or pick input primitives. A tablet provides
an area on which the user can dide a stylus. The tip of the stylus contains a microswitch. By pressng
down on the stylus the user can trigger the logical function.

Thetablet is particularly handy for digitizing drawings. the user can tape a picture onto the tablet surface
and then move the stylus over it, pressng down to send each new point to the workstation. A menu areais
sometimes printed on the tablet surface, and the user Pick's a menu item by pressng down the stylus
inside one of the menu item boxes. Suitable software asociates each menu item box with the desired
function for the application that isrunning.

Space Ball and Data Glove. The SpaceBall and Data Glove are relatively new input devices. Both are
designed to give a user explicit control over several variables at once, by performing hand and finger
moations. Sensorsinside each device pick up subtle hand motions and trandate them into Valuator values
that get passed back to the application. They are particularly suited to situations where the hand
movements themselves make sense in the antext of the program, such as when the user is contralling a
virtual roba hand, and watching the dfeds of such motions smulated on the screen.

(Sedion 1.6 Summary - deleted.)

1.7. For Further Reading.

A number of bodks provide a goad introduction to the field of computer graphics. Hearn and Baker
[hearn94] gives aleisurely and interesting overview of the field with lots of examples. Foley and Van
Dam [foley93] and David Rogergrogers98] give additional technical detail on the many kinds of graphics
input and output devices. An excdlent series of five bodks known as “Graphics Gems® [gems], first
published in 1990 brought together many new ideas and “gems’ from graphics researchers and

practiti oners around the world.

There are al'so a number of journals and magaznes that give good insight into new techniquesin
computer graphics. The most accesshble isthe IEEE Computer Graphics and Appli cations, which often
features aurvey articles on new areas of effort with graphics. The dassc repositories of new resultsin
graphics are the annual Proceeadings of SIGGRAPH [SIGGRAPH], and the ACM Transactions on
Graphics [TOGS]. Another more recant arrival isthe Journal of Graphics Tods[jat].

Hill - Chapter 1 /9/99 agp 23

(For Ece660 - Fall, 1999)

CHAP 2. Getting Started: Drawing Figures

Machines exist; let usthen exploit themto
create beauty , a modern beauty, while we are
abou it. For we livein the twentieth century.
Aldous Huxley

Goals of the Chapter

- To get started writing programs that produce pictures.
To lean the basic ingredients foundin every OpenGL program
To develop some dementary graphics toalsfor drawing lines, palylines, and pdygors.
To develop todsthat all ow the user to control a program with the mouse and keyboard.

Preview

Sedion 21 discusses the basics of writing a program that makes smple drawings. The importance of device-
independent programming is discussed, and the charaderistics of windows-based and event-driven programs
are described. Sedion 22 introduces the use of OpenGL as the device-independent applicaion programmer
interface(API) that is emphasized throughou the book and shows how to draw various graphics primitives.
Sample drawings, such as a picture of the Big Dipper, adrawing d the Sierpinski gasket, and a plot of a
mathematicd functionill ustrate the use of OpenGL. Sedion 23 discusses how to make pictures based on
polylines and pdygors, and begins the building d a personal library of graphics utiliti es. Sedion 24
describes interadtive graphics programming, whereby the user can indicate positi ons on the screen with the
mouse or presskeys on the keyboard to control the adion d a program. The chapter ends with a number of
case studies which embelli sh ideas discussed ealier and that delve deeper into the main ideas of the chapter.

2.1. Getting started making pictures.

Like many dsciplines, computer graphics is mastered most quickly by ddngit: by writing and testing
programs that produce avariety of pictures. It isbest to start with simple tasks. Oncethese ae mastered you
can try variations, seewhat happens, and move towards drawing more complex scenes.

To et started you reed an environment that lets you write and exeaute programs. For graphics this
environment must also include hardware to display pictures (usually a CRT display which we shall cdl the
“screen”), and alibrary of software todls that your programs can use to perform the adual drawing o
graphics primitives.

Every graphics program begins with some initiali zations; these establi sh the desired dsplay mode, and set up

a oordinate system for spedfying pants, lines, etc. Figure 2.1 shows ome of the diff erent variations one

might encourter. In part @) the entire screen is used for drawing: the display isinitialized by switchingit into

“graphics mode”, and the mordinate system is establi shed as srown. Coordinates x andy are measured in
ixels, with xincreasingto the right and yincreasing dovnward.

Figure 2.1. Some common varieties of display layouts.

Computer Graphics Chap 2 094/99 101PM page 1

In part b) amore modern "window-based" system is shown. It can suppat a number of different redanguar
windows onthe display screen at onetime. Initialization involves creaing and “opening’ a new window
(which we shall cdl the screen window?) for graphics. Graphics commands use a @ordinate system that is
attached to the window: usually x increases to the right and y increases downward?. Part ¢) shows a variation
where the initial coordinate system is “right side up’, with y increasing upvard®.

Eacdh system normally has some dementary drawing todls that help to get started. The most basic has a name
like setPixel (x,y, color): it setstheindividual pixel at location (x, y) to the wlor spedfied by color

It sometimes goes by dff erent names, such as putPixel (), SetPixel (), or drawPoint (). Alongwith
setPixel () thereisamost awaysatod to draw a straight line, line(x1, y1, x2, y2), that drawsa
line between (x1, y1) and (x2, y2). In other systemsit might be cdled drawLine () or Line (). The
commands

line(100, 50, 150, 80);
line(150, 80, 0, 290);

would draw the pictures shown in each system in Figure 2.1. Other systems have no line () command, but
rather use moveto(x, y) and lineto(x, y) . They stem from the analogy of a pen plotter, where the
pen has ss/me curre nt position. The notion isthat moveto(x, y) moves the pen invisibly to location (x,

y) , thereby setting the arrent position to (X, y); lineto (X, y) drawsalinefrom the arrent position to (x,
y), then updates the arrent position to this (X, y). Each command moves the pen from its current position to a
new position. The new position then becmes the arrent position. The picturesin Figure 2.1 would be drawn
using the mmmands

moveto(100, 50);
lineto(150, 80);
lineto(0, 290);

For a particular system the energetic programmer can develop awhale todkit of sophisticated functions that
utili zethese dementary todls, thereby bulding upa powerful library of graphics routines. The final graphics
applicaions are then written making wse of this personal library.

An obvous problem isthat ead graphics display uses diff erent basic commandsto “driveit”, and every
environment has a different colledion o todls for producing the graphics primitives. This makesit difficult to
port a program from one environment to another (and soorer or later everyone is faced with reconstructing a
program in a new environment): the programmer must build the necessary todls ontop d the new
environment’s library. This may require major alterationsin the overall structure of alibrary or applicaion,
and significant programmer effort.

2.1.1. Device Independent Programming, and OpenGL.

It isaboonwhen a uniform approadch to writing gaphics applicaionsis made avail able, such that the same
program can be compiled and run onavariety of graphics environments, with the guaranteethat it will
produwce nealy identicd graphicd output onead dsplay. Thisis known as deviceindependent graphics
programming. OpenGL offers such atoadl. Porting a graphics program only requires that you install the
appopriate OpenGL libraries onthe new macine; the gplicationitself requires no change: it cdlsthe same
functionsin thislibrary with the same parameters, and the same graphicd results are produced. The OpenGL
way of creaing gaphics has been adopted by alarge number of industrial companies, and OpenGL libraries
exist for al of theimportant graphics environments®.

OpenGL isoften cdled an “apgicaion pogramminginterface” (API): the interfaceisa wlledion o
routines that the programmer can cdl, alongwith amodel of how the routines work together to produce
graphics. The programmer “sees’ only the interface and is therefore shielded from having to cope with the
spedfic hardware or software idiosyncrasies on the resident graphics g/stem.

1 The word "window" is overused in graphics: we shall take caeto dstinguish the various instances of the term.

2 Example systems are unix workstations using X Windows, an IBM pc runring Windows 95 sing the basic Windows
Applicaion Programming Interface and an Apple Madntosh wsing the built-in QuickDraw library.

3 An example is any window-based system using OpenGL.
4 Appendix 1 dscusses how to oltain and et started with OpenGL in dff erent environments.
Computer Graphics Chap 2 094/99 101PM page 2

OpenGL isat its most powerful when drawing images of complex threedimensional (3D) scenes, as we shall
see It might be viewed as overkill for smple drawings of 2D objeds. But it works well for 2D drawing, too,
and aff ords a unified approach to produwcing pictures. We start by using the simpler constructs in OpenGL,
capitalizing for simplicity onthe many default statesit provides. Later when we write programsto produce
elaborate 3D graphics we tap into OpenGL’s more powerful feaures.

Althoughwe will develop most of our graphicstoads using the power of OpenGL, we will also “look unadr
the hood' and examine how the dasdcd graphics algorithms work. It isimportant to seehow such toadls
might be implemented, even if for most appli cations you wse the ready-made OpenGL versions. In spedal
circumstances you may wish to use an alternative dgorithm for some task, or you may encounter a new
problem that OpenGL does nat solve. You also may need to develop a graphics appli cation that does not use
OpenGL at all.

2.1.2. Windows-based programming.

As described above, many modern graphics s/stems are windows-based, and manage the display of multiple
overlapping windows. The user can move the windows aroundthe screen using the mouse, and can resize
them. Using OpenGL we will do ou drawingin ore of these windows, aswe saw in Figure 2.1c.

Event-driven programming.

Anather property of most windows-based programs is that they are event-driven. This means that the program
responds to various events, such as a mouse click, the pressof a keyboard key, or the resizing o a screen
window. The system automaticdly manages an event queue, which receéves messages that certain events have
ocaurred, and deals with them on a first-come first-served basis. The programmer organizes a program as a
colledion of callback functions that are exeauted when events occur. A call back function is created for each
type of event that might occur. When the system removes an event from the queue it smply exeates the

call back function associated with the type of that event. For programmers used to buil ding programs with a
“do this, then do this,...” structure some rethinking is required. The new structure is more like: “do nothing
until an event occaurs, then do the spedfied thing”.

The method d associating a cdlbadk function with an event type is often guite system dependent. But
OpenGL comes with a Utility Toadlkit (see Appendix 1), which providestodlsto asdst with event
management. For instance

glutMouseFunc(myMouse); [/ register the mouse action function

registersthe function myMouse() as the functionto be exeauted when a mouse event occurs. The prefix
“glut” indicatesit is part of the OpenGL Utility Todkit. The programmer puts code in myMouse() to handle
al of the possble mouse adions of interest.

Figure 2.2 shows a skeleton d an example main () function for an event-driven program. We will base most
of our programsin thisbook onthis keleton. There ae four principle types of events we will work with, and
a “glut” functionis avail able for ead:

void main()

initi ali ze things®

create a screen windowv

glutDisplayFunc(myDisplay); // register the redraw function
glutReshapeFunc(myReshape); // register the reshape function
glutMouseFunc(myMouse); /I register the mouse action function
glutkeyboardFunc(myKeyboard); // register the keyboard action function
perhaps initiali ze other things

glutMainLoop(); // enter the unend ing main loop

}
all of the allback functions are defined here

Figure 2.2. A skeleton d an event-driven program using OpenGL.

5 Notes own in italics in code fragments are pseudocode rather than actual program code. They suggest the adions
that red code substituted there shoud acaomplish.
Computer Graphics Chap 2 094/99 101PM page 3

glutDisplayFunc(myDisplay); Whenever the system determines that a screen window should be
redrawn it issues a“redraw” event. This happens when the window is first opened, and when the window is
exposed by moving another window off of it. Here the function myDisplay () isregistered as the all back
function for aredraw event.

glutReshapeFunc(myReshape); Screen windows can be reshaped by the user, usually by dragging a
corner of the window to a new positi on with the mouse. (Simply moving the window does not producea
reshape event.) Here the function myReshape () isregistered with the “reshape” event. Aswe shall see
myReshape () is automatically passed arguments that report the new width and height of the reshaped
window.

glutMouseFunc(myMouse); When one of the mouse buttonsis pressed or released a mouse event is
isaled. Here myMouse() is registered as the function to be @lled when amouse event occurs. myMouse() is
automaticall y passed arguments that describe the mouse location and the nature of the button action.
glutkeyboardFunc(myKeyboard); Thisregistersthe function myKeyboard () with the event of
pressng or releasing some key on the keyboard. myKeyboard () is automatically passed arguments that tell
which key was pressed. Conveniently, it isalso passed data & to the location of the mouse at the time the
key was pressd.

If aparticular program does not use mouse interaction, the @rresponding call back function need not be
registered or written. Then mouse dicks have no effed in the program. The sameistrue for programs that have
no keyboard interaction.

Thefinal function shown in Figure 2.2 isglutMainLoop () . When thisis exeauted the program draws the
initial picture and enters an unending loagp, in which it simply waits for eventsto occur. (A program is normally
terminated by clicking in the “go away” box that is attached to each window.)

2.1.3. Opening a Window for Drawing.

Thefirst task isto open a screen window for drawing. This can be quite invalved, andis g/stem dependent.
Because OpenGL functions are device independent, they provide no suppat for window control on spedfic
systems. But the OpenGL Utility Tod kit introduced above does include functions to open awindow on
whatever system you are using.

Figure 2.3 fleshes out the skeleton above to show the entire main () function for a program that will draw
graphicsin a screen window. The first five function cdl s use the toadlkit to open a window for drawing with
OpenGL. In your first graphics programs you can just copy these asis: later we will seewhat the various
arguments mean and haw to substitute others for them to achieve cetain effeds. The first five functions
initialize and dsplay the screen window in which ou program will produce graphics. We give abrief
description d what ead ore does.

/I appropriate #includes go here — see Appendix 1

void main(int argc, char** argv)

{
glutinit(&argc, argv); // initialize the toolkit
glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB); // set the display mode
glutinitWindowSize(640,480); // set window size
glutinitWindowPosition(100, 150); // set the window position on screen
glutCreateWindow("my first attempt™); // open the screen window
/I reqgister the callback functions
glutDisplayFunc(myDisplay);
glutReshapeFunc(myReshape);
glutMouseFunc(myMouse);
glutkeyboardFunc(myKeyboard);
myInit(); // additional initializations as necessary
glutMainLoop(); /I go into a perpetual loop

}

Figure 2.3. Code using the OpenGL utility todlkit to open the initial window for drawing.

Computer Graphics Chap 2 094/99 101PM page 4

glutinit(& argc, argv); This function initi ali zes the todkit. Its arguments are the standard ones
for passng command line information; we will make no use of them here.
glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB); This function spedfies how the display
should be initialized. The built-in constants GLUT SINGLE and GLUT RGB which are ORd together,
indicate that a single display buffer should be all ocated and that colors are spedfied using desired
amounts of red, green, and blue. (Later we will alter these arguments:. for example, we will use double
buffering for smoath animation.)

glutinitWindowSize(640,480); Thisfunction spedfiesthat the screen window should initially
be 640 pxeswide by 480 pxes high. When the program is running the user can resize this window as
desired.

glutinitWindowPosition(100, 150); Thisfunction spedfiesthat the window’ s upper left
corner should be positi oned on the screen 100 pxds from the left edge and 150 pxes down from the top.
When the program is running the user can move this window wherever desired.

glutCreateWindow("my first attempt"); Thisfunction actually opens and displays the
screen window, putting thetitle “my first attempt” in thetitl e bar.

The remaining functionsin main () register the cdlbadk functions as described ealier, perform any
initializations edfic to the program at hand, and start the main event loop gocessng. The programmer
(you) must implement eat o the cdlbadk functions aswell asmylnit ().

2.2. Drawing Basic Graphics Primitives.

We want to develop programming techniques for drawing a large number of geometric shapes that make up
interesting pictures. The drawing commands will be placal in the cdlbadk function associated with a redraw
event, such asthe myDisplay () function mentioned abowve.

We first must establi sh the mordinate system in which we will describe graphicd objeds, and prescribe
where they will appea in the screen windowv. Computer graphics programming, it seems, involves an ongaong
strugde with defining and managing dfferent coordinate systems. So we start simply and work upto more
complex approaches.

We begin with an intuitive mordinate system. It istied dredly to the mordinate system of the screen window
(seeFigure 2.1¢), and measures distances in pixels. Our first example screen window, shown in Figure 2.4, is
640 pxelswide by 480 pxels high. The x-coordinate increases from 0 at the left edge to 639at the right edge.
The y-coordinate increases from 0 at the bottom edge to 479at the top edge. We establi sh this coordinate
system later, after examining some basic primitives.

Figure 2.4. Theinitial coordinate system for drawing.

OpenGL providestodsfor drawing al of the output primitives described in Chapter 1. Most of them, such as
points, lines, palylines, and pdygonrs, are defined by ore of more vertices. To draw such oljedsin OpenGL
you pessit alist of vertices. Thelist occurs between the two OpenGL function cals glBegin () and

glEnd (). The agument of glBegin () determines which oljed is drawn. For instance, Figure 2.5 shows
threepoints drawn in awindow 640 pxelswide and 480 fixels high. These dots are drawn using the
command sequence:

Computer Graphics Chap 2 094/99 101PM page 5

Figure 2.5. Drawing threedots.

glBegin(GL_POINTS);
glVertex2i(100, 50);
glVertex2i(100, 130);
glVertex2i(150, 130);
glEnd();

The mnstant GL POINTS is built-into OpenGL. To draw other primitives you replaceGL_POINTSwith
GL_LINES, GL_POLYGONtc. Each o these will be introduced in turn.

Aswe shall seelater, these mmmands $nd the vertex information davn a “graphics pipeline”, in which they
gothroughseveral processng steps (look ahead to Figure ???R For present purposes just think of them as
being sent more or lessdiredly to the mordinate system in the screen window.

Many functionsin OpenGL like glVertex2i () have anumber of variations. The variations distingush the
number and type of arguments passed to the function. Figure 2.6 shows how the such function cdls are
formatted.

glVertex2i(...)
e

al basic number of type of
library command arguments argument

Figure 2.6. Format of OpenGL commands.

The prefix “gl ” indicates afunction from the OpenGL library (asoppased to “glut " for the utility toadlkit).
It isfollowed bythe basic command roat, then the number of arguments being sent to the function (this
number will often be 3 and 4in later contexts), and finally the type of argument, (i for aninteger, f for a
floating pant value, etc., as we describe below). When we wish to refer to the basic command withou regard
to the spedfics of its arguments we will use an asterisk, asin glVertex *().

To generate the same threedat picture eowve, for example, you could passit floating pant values instead of
integers, using:

glBegin(GL_POINTS);
glVertex2d(100.0, 50.0);
glVertex2d(100.0, 130.0);
glVertex2d(150.0, 130.0);
glEnd();

On OpenGL Data Types.

OpenGL works internally with spedfic data types: for instance, functions aich asglVertex2i () exped
integers of a catain size (32 hts). It iswell known that some systemstrea the C or C++ datatypeint asa
16 bit quantity, whereas otherstreat it asa 32 hit quantity. Thereisno standard sizefor afloat or double
either. To insure that OpenGL functions receve the proper data typesit iswise to use the built-in type names

Computer Graphics Chap 2 094/99 102PM page 6

like GLint or GLfloat for OpenGL types. The OpenGL typesarelisted in Figure 2.7. Some of these types
will not be encourtered urtil | ater in the book

suffix datatype typicd C or C++ type OpenGL type name

b 8-bit integer signed char GLbyte

S 16-bit integer short GLshort

i 32-bit integer int or long GLint, GLsizd

f 32-bit floating point float GLfloat, GL clampf

d 64-bit floating point double GL double,GL clampd

ub 8-bit unsigned number unsigned char GL ubyte,GL bodean

us 16-bit unsigned number unsigned short GLushort

ui 32-bit unsigned number unsigned int or unsigned long GLuint,Glenum,GL bitfield

Figure 2.7. Command suffixes and argument data types.

Asan example, afunction ising suffix i expeds a 32-hit integer, but your system might trandateint asa
16-hit integer. Therefore if you wished to encapsul ate the OpenGL commands for drawing a dot in a generic
function such as drawDot () you might be tempted to use:

void drawDot(int x, int y) danger: passs int ’s
{ // draw dot at integer point (X, y)
glBegin(GL_POINTS);
glVertex2i(x, y);
glEnd();

which passsint’'s toglVertex2i (). Thiswill work onsystemsthat use 32-hit int's , but might cause
troude onthose that use 16-bit int’'s . It ismuch safer to write drawDot () asin Figure 2.8, andto use
GLint's in you programs. When yourecompil e your programs on a new system GLint , GLfloat |, etc.
will be asciated with the gopropriate C++ types (in the OpenGL header GLh —seeAppendix 1) for that
system, and these types will be used consistently throughot the program.

void drawDot(GLint x, GLint y)
{ // draw dot at integer point (X, y)
glBegin(GL_POINTS);
glVertex2i(x, y);
glEnd();

Figure 2.8. Encapsulating OpenGL detail sin a generic function drawDot ()6.

The OpenGL “ State’.

OpenGL keepstradk of many state \ariables, such asthe aurrent “size” of paints, the aurrent color of
drawing, the aurrent badkgroundcolor, etc. The value of a state variable remains adive urtil anew valueis
given. The sizeof apaint can be set with glPointSize (), which takes one floating pant argument. If its
argument is 3.0 the point is usually drawn as a square threepixels on a side. For additional detail s onthisand
other OpenGL functions consult appropriate OpenGL documentation (some of which is on-line; see Appendix
1). The drawing color can be spedfied using

glColor3f(red, green, blue);

where the values of red, green, and Hue vary between 0.0 and 10. For example, some of the mlorslisted in
Figure 1.3.24???coud be set using:

glColor3f(1.0, 0.0, 0.0); // set drawing color to red
glColor3f(0.0, 0.0, 0.0); Il set drawing color to black
glColor3f(1.0, 1.0, 1.0); Il set drawing color to white
glColor3f(1.0, 1.0, 0.0); Il set drawing color to yellow

6 us ngthis functioninstead of the spedfic OpenGL commands makes a program more readable. It is not unusual to
build upa personal colledion d such utiliti es.

Computer Graphics Chap 2 094/99 102PM page 7

The badkgroundcolor is «t with glClearColor(red, green, blue, alpha), where alpha
spedfies a degreeof transparency andis discussed later (use 0.0 for now.) To clea the entire window to the
badkgroundcolor, use glClear (GL_COLOR_BUFFER_BIT) The agument GL_COLOR_BUFFER_BITs
ancther constant built i nto OpenGL.

Establishing the Coordinate System.

Our methodfor establishing ou initial choice of coordinate system will seem obscure here, but will become
cleaer in the next chapter when we discusswindows, viewports, and clipping. Here we just take the few
reguired commands on faith. The mylInit () functionin Figure 2.9 isagood paceto set up the mordinate
system. Aswe shall seelater, OpenGL routinely performs alarge number of transformations. It uses matrices
to dothis, and the cmmmandsin mylnit () manipulate cetain matrices to accomplish the desired gacal. The
gluOrtho2D () routine sets the transformation we need for a screen window that is 640 pxelswide by 480
pixels high.

void mylnit(void)

gIMatrixMode(GL_PROJECTION);
glLoadldentity();
gluOrtho2D(0, 640.0, 0, 480.0);

Figure 2.9. Establishing a simple mordinate system.

Putting it together: A Complete OpenGL program.

Figure 2.10 shows a complete program that draws the lowly threedats of Figure 2.5. It is easily extended to
draw more interesting oljeds as we shall see The initiaizaionin mylnit () setsupthe cordinate system,
the paint size, the badkgroundcolor, and the drawing color. The drawing is encgpsulated in the cdl badk
function myDisplay (). Asthis program is noninteradive, no aher cdlbad functions are used. glFlush ()
is cdled after the dots are drawn to insure that all datais completely processed and sent to the display. Thisis
important in some systems that operate over a network: data is buffered onthe host machine and orly sent to
the remote display when the buffer becomesfull or aglFlush () isexeauted.

#include <windows.h> // use as needed for your system

#include <gl/Gl.h>

#include <gl/glut.h>

[l<<<<<<gLLLLLLLL < mylnit >>>5>555>555>>5>>>>>
void mylnit(void)

glClearColor(1.0,1.0,1.0,0.0); /I set white background color
glColor3f(0.0f, 0.0f, 0.0f); /Il set the drawing color
glPointSize(4.0); // a‘dot’ is 4 by 4 pixels
gIMatrixMode(GL_PROJECTION);
glLoadldentity();
gluOrtho2D(0.0, 640.0, 0.0, 480.0);
;/<<<<<<<<<<<<<<<<<<<<<<<< myDispIay SSS5535555555>5>5>>
void myDisplay(void)

glClear(GL_COLOR_BUFFER_BIT); // clear the screen
glBegin(GL_POINTS);
glVertex2i(100, 50); /I draw three points
glVertex2i(100, 130);
glVertex2i(150, 130);
glEnd();
glFlush(); // send al | output to display

fl<<<<g<<<LLLLLLL LKL K K Main >>>>>>>>>>55>>>5>5>>>>>>

void main(int argc, char** argv)

{
glutinit(&argc, argv); [/l initialize the toolkit
glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB); // set display mode
glutinitWindowSize(640,480); // set window size
glutinitWindowPosition(100, 150); // set window position on screen
glutCreateWindow("my first attempt™); // open the screen window

Computer Graphics Chap 2 094/99 102PM page 8

glutDisplayFunc(myDisplay); /I register redraw function

myInit();

glutMainLoop(); // go into a perpetual loop
}

Figure 2.10. A complete OpenGL program to draw threedats.

2.2.1. Drawing Dot Constellations.

A “dat constell ation” is sme pattern of dots or points. We describe several examples of interesting dd
constell ations that are eaily produced using the basic program in Figure 2.10. In ead case the gpropriate
functionis named in glutDisplayFunc () asthe cdlbad function for the redraw event. Y ou are strongy
encouraged to implement and test ead example, in order to buld upexperience.

Example 2.2.1. The Big Dipper.
Figure 2.11 shows a pattern of eight dots representing the Big Dipper, afamiliar sight in the night sky.

Figure 2.11. Two simple Dot Constell ations.

The names and “positions’ of the @ght starsin the Big Dipper (for one particular view of the night sky), are
given by. {Dubhe, 289, 190G}, {Merak, 320 128, {Pheada, 239, 67}, {Megrez 194, 101}, {Alioth, 129 83},
{Miza, 75, 73}, {Alcor, 74, 74}, { Alkaid, 20, 10}. Sinceso few datapointsareinvaveditiseasy tolist
them explicitly, or “hard-wire” them into the cde. (When many das are to be drawn, it is more convenient
to store them in afile, and then have the program read them from the file and daw them. We dothisin alater
chapter.) These points can replacethe threepoints gedfied in Figure 2.10. It is useful to experiment with
this constell ation, trying dfferent point sizes, aswell as different badkgroundand drawing colors.

Example 2.2.2. Drawing the Sierpinski Gasket.

Figure 2.12 shows the Sierpinski gasket. Its dot constell ation is generated procedurally, which means that
ead successve dat is determined by a procedural rule. Althoughthe rule hereis very simple, the final pattern
isafractal (seeChapter 8)! We first approach the rules for generating the Sierpinski gasket in an intuitive
fashion. In Case Study 22 we seethat it is one example of an iterated function system.

Computer Graphics Chap 2 094/99 102PM page 9

Figure 2.12. The Sierpinski Gasket. (file: fig2.12.bmp)

The Sierpinski gasket is produced by cdlingdrawDot () many timeswith da positions(xo, yo), (xl, yl), (xz,
yz),....determined byasimple dgorithm. Dencte the k-th pant p= (xk,yk). Each padnt is based onthe
previous point pk_l.The procedureis:

1. Chocse threefixed pdnts T, T, and T to form some triangle, as srownin Figure 2.13a.
2. Chocse theinitial point p,to be drawn by seleding ore of the paints T,, T, and T a randam.

Now iterate steps 3-5 urtil the pattern is stisfyingly filled in:

3. Chaose one of the threepoaints T, T, and T a randam; cdl it T.
4. Construct the next point P, asthe midpoint” between T and the previoudy found pant p . Hence
k-1

a). b).
To
/ N\
/ N\
/ \
/ N\
, N Ry \
/ \ / op2 A
, \ ;B B _\.
~~~~~ T - - - T,
L 2 T

Figure 2.13. Building the Sierpinski gasket.
p, = midpantof p andT,
5. Draw p, usingdrawDot ().

Figure 2.13bshows a few iterations of this: Suppase the initial point P, happens to beT andthatT ischosen
next. Thenp isformed so that it lies halfway betweenT andT SuppoaeT ischosen next sop, I|eshalfway
between P, and T Next suppcse T, ischosen again, so p3 |sformed as §nown etc. Thisprocessgoeson

generating and drawing pants (conceptually forever), and the pattern of the Sierpinski gasket quickly
emerges.

7 Tofind the midpant between 2 pants, say (3, 12) and (5, 37) smply average their x andy comporents individually:
add them and dvide by 2 So the midpant of (3,12) and (5,37) is((3 +5)/ 2, (12 + 37)/ 2) = (4, 24).

Computer Graphics  Chap 2 094/99  102PM page 10



It is convenient to define asimple dassGLintPoint  that describes a point whose wordinates are integerse:

class GLintPoint{

public:
GLint x, y;
h
We then buld andinitialize a array of threesuch pants T[0], T[1] ,and T[2] to hdd thethree orners
of the triange using GLintPoint T[3]= {{10,10},{300,30},{200, 300}} . Thereisno

nedl to store eab padnt p, in the sequence a it is generated, since we simply want to draw it and then move
on. So we set up avariable point  to hdd this changing padnt. At ead iteration point isupdated to hdd
the new value.

Weusei= random(3) tochocseoneof thepointsT[i] at random. random (3) returns one of the values
0, 1, or 2 with equal likelihood It is defined as®

intrandom(  int m) { returnrand() % m; }

Figure 2.14 shows the remaining detail s of the dgorithm, which generates 1000 pants of the Sierpinski
gasket.

void  Sierpinski(void)
GLintPoint T[3]= {{10,10},{300,30},{200, 300}};

int index = random(3); /110, 1, or 2 equally likely
GLintPoint point = T[index]; // initial point
drawDot(point.x, point.y); // draw initial point

for(inti = 0; i <1000; i++) // draw 1000 dots

index = random(3);

point.x = ( point.x + T[index].x) / 2;
point.y = ( point.y + T[index].y) / 2;
drawDot( point.x,point.y);

}
glFlush();

Figure 2.14. Generating the Sierpinski Gasket.

Example 2.2.3. Simple “ Dot Plots’.
Suppase you wish to learn the behavior of some mathematica function f(x) as x varies. For example, how
does

f(x) = € cos(2px)

vary for values of x between Oand 4? A quick plot of f(x) versus x, such asthat shown in Figure 2.15, can
reved alot.

8|f C rather than C++ isbeing wsed, asimple struct  isuseful here: typedef  struct{GLint x,
y;}GLintPoint
9 Recdl that the standard functionrand () returns a pseudarandam value in the range 0 to 32767 The moduo

functionreducesit toavaluein therange 0 to 2
Computer Graphics  Chap 2 094/99  102PM page 11



Figure 2.15. A “dat plot” of €*cos(2p x) versus x. (file: fig2.15.bmp)

To plot thisfunction, smply “sample” it at a clledion o equispaced x-values, and dot adat at ead
coordinate pair (x, f(x)). Choasing some suitable increment, say 0.005 between conseautive x-values the
processis basicdly:

glBegin(GL_POINTS);
for(GLdouble x = 0; x < 4.0 ; x += 0.005)
glVertex2d(x, f(x));
glEnd();
glFlush();

But thereis a problem here: the picture produced will be impossbly tiny becaise values of x between Oand 4
map to the first four pixels at the bottom left of the screen window. Further, the negative values of f(.) will li e
below the window and will nat be seen at all. We therefore need to scde and paition the values to be plotted
so they cover the screen window area gopropriately. Here we do it by brute force, in essence picking some
values to make the picture show up adequately onthe screen. Later we develop a general procedure that copes
with these aljustments, the so-caled procedure of mapping from world coordinates to window coordinates.

* Scaling x: Suppase we want the range from 0 to 4to be scded so that it coversthe entire width of the screen
window, givenin pixels by screenWidth . Then we neal orly scde dl x-values by screenWidth /4,
using

SXx=x* screenWidth /4.0;

which yields 0 when x is 0, and screenWidth ~ when x is 4.0, as desired.

* Scaling, and shifting y: The values of f(x) lie between —10 and 10, so we must scae and shift them as
well. Suppcse we set the screen window to have height screenHeight  pixels. Then to placethe plot in the
certer of the window scde by screenHeight /2 and shift up byscreenHeight /2

sy=(y+1.0)* screenHeight / 2.0;

Asdesired, thisyields 0 when y is—1.0, and screenHeight  wheny is 1.0.

Note that the conwversions from x to sx, and from y to sy, are of the form:

X= A*x+B (2.2)
y=C*y+D

Computer Graphics  Chap 2 094/99  102PM page 12



for properly chasen values of the mnstants A, B, C, and D. A and C perform scding; B and D perform
shifting. This ding and shiftingis basicaly aform of “affine transformation”. We study affine
transformationsin depth in Chapter 5. They provide amore consistent approach that maps any spedfied range
in x andy to the screen window.

We nead ony set the values of A, B, C, and D appropriately, and daw the dot -plot using:

GLdouble A, B, C, D, x;
A = screenWidth / 4.0;

B =0.0;
C = screenHeight / 2.0;
D=C;

glBegin(GL_POINTS);

for(x = 0; x < 4.0 ; x += 0.005)
glVertex2d(A * x + B, C * f(x) + D);

glEnd();

glFlush();

Figure 2.16 shows the entire program to draw the dot plot, toill ustrate how the various ingredients fit together. The
initiali zations are very simil ar to those for the program that draws threedots in Figure 2.10. Noticethat the width and
height of the screen window are defined as constants, and used where neaded in the ade.

#include <windows.h> // use proper includes for your system
#include <math.h>
#include <gl/Gl.h>
#include <gl/glut.h>
const int screenWidth = 640; [/l width of screen window in pixels
const int screenHeight = 480; I/ height of screen window in pixels
GLdouble A, B, C, D; // values used for scaling and shifting
[1<<<<<<<gLLLLLLLLLLLLLLL mylnit SSS553S5553355555>55>5>

void mylnit(void)

glClearColor(1.0,1.0,1.0,0.0); /I background color is white

glColor3f(0.0f, 0.0f, 0.0f); I/l drawing color is black

glPointSize(2.0); // a'dot' is 2 by 2 pixels
glMatrixMode(GL_PROJECTION); Il set "camera shape”
glLoadldentity();

gluOrtho2D(0.0, (GLdouble) screenWidth, 0.0, (GLdouble)screenHeight);
A = screenWidth / 4.0; // set values used for scaling and shifting

B =0.0;

C=D= screenHeight/ 2.0;
}

fl<<<<<<<ggggggggg<<<< myDisplay >>>>>>>>>>>>>>>>>
void myDisplay(void)
{
glClear(GL_COLOR_BUFFER_BIT); // clear the screen
glBegin(GL_POINTS);
for(GLdouble x = 0; x < 4.0 ; x += 0.005)

Gldouble  func = exp(-x) * cos(2 * 3.14159265 * x);

glVertex2d(A*x+ B, C * func + D);
}
glEnd();
glFlush(); I/ send all output to display

}

fl<<<<g<<LLLLLL LKL LK< Main >>>>>>>>>>5>5>>>5>5>>>>>>

void main(int argc, char** argv)

{
glutinit(&argc, argv); [/l initialize the toolkit
glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB); // set display mode
glutinitWindowSize(screenWidth, screenHeight); // set window size
glutinitWindowPosition(100, 150); // set window position on screen
glutCreateWindow("Dot Plot of a Function”); // open the screen window
glutDisplayFunc(myDisplay); // register redraw function

Computer Graphics Chap 2 094/99 102PM page 13



myInit();
glutMainLoop(); // go into a perpetual loop

Figure 2.16. A complete program to draw the “dot plot” of afunction.

Practice Exercise 2.2.2. Dat plotsfor any function (). Consider drawing a dat plot of the functionf(.) asin
Example 2.2.4, where it isknown that as x varies from x,,, to x,.,, f(x) takes on values betweeny,,, to y, ..
Findthe gpropriate scding and trandation factors  that the dots will li e properly in a screen window with
width W pixels and height H pixels.

2.3. Making Line-Drawings.
Hamlet: Do you see yonder cloudthat's almost in shape of a camel?
Polonius: By the mass and'tislikea camel, indeed.
Hamlet: Methinksit islikea weasel.
William Shakespeare, Hamlet

Asdiscussed in Chapter 1, line drawings are fundamental in computer graphics, and ailmost every graphics
system comes with “driver” routinesto draw straight lines. OpenGL makesit easy to draw aline: use
GL_LINES asthe agument to glBegin (), and passit the two end padnts as vertices. Thusto draw aline
between (40,100 ) and (202,96 ) use:

glBegin(GL_LINES); I/l use constant GL_LINES here
glVertex2i(40, 100);
glVertex2i(202, 96);

glEnd();

This code might be encgpsulated for conveniencein the routine drawLinelnt  ():

void drawLinelnt(GLint x1, GLint y1, GLint x2, GLint y2)

{
glBegin(GL_LINES);
glVertex2i(x1, y1);
glVertex2i(x2, y2);
glEnd();

}

and an aternate routing, drawLineFloat () could be implemented similarly (how?).

If more than two vertices are spedfied between gIBegin (GL_LINES) and glEnd () they are taken in pairs
and a separate line is drawn between ead pair. The tic-tactoe board shown in Figure 2.17awould be drawn
using:

a). thinlines  b). thick lines  ¢). stippled lines

Figure 2.17. Simple picture built from four lines.

glBegin(GL_LINES);

glVertex2i(10, 20); // first horizontal line

glVertex2i(40, 20)

glVertex2i(20, 10); // first vertical line

glVertex2i(20, 40);

<four more calls to glVertex2i() here for other two lines>
glEnd();
glFlush();

OpenGL providestods for setting the attributes of lines. A line€' s color is %t in the same way as for points,
using glColor3f() . Figure 2.17b shows the use of thicker lines, as =t by glLineWidth (4.0 ). The

Computer Graphics  Chap 2 094/99  102PM page 14




default thicknessis 1.0. Figure 2.17c shows gippled (dotted and dashed) lines. The detail s of stippling are
addressed in Case Study 2.5 at the end of this chapter.

2.3.1. Drawing Polylines and Polygons.
Recadl from Chapter 1 that a polylineisa mlledion d line segments joined endto end. It is described by an
ordered list of paints, asin:

po = (Xo' yo)! p1 = (Xli yl)! sy pn = (Xn! yn) (231)

In OpenGL apadylineiscdled a “line strip”, andis drawn by spedfying the verticesin turn between
giBegin (GL_LINE_STRIP) andglEnd (). For example, the mde:

glBegin(GL_LINE_STRIP); // draw an open polyline
glVertex2i(20,10);
glVertex2i(50,10);
glVertex2i(20,80);
glVertex2i(50,80);
glEnd();
glFlush();

produces the palyline shown in Figure 2.18a. Attributes guch as color, thicknessand stippling may be goplied
to pdylinesin the same way they are gplied to single lines. If it isdesired to conred the last point with the
first point to make the paylineinto a paygonsimply replaceGL_LINE_STRIP with GL_LINE_LOORP The
resulting pdygonis sown in Figure 2.18h.

Figure 2.18. A polyline and apolygon

Polygors drawn using GL_LINE_LOOPcanna be fill ed with a clor or pattern. To draw fill ed pdygors you
use glBegin(GL_POLYGON) , as described later.

Example 2.3.1. Drawing Line Graphs. In Example 2.2.3 we looked at plotting a function f(x) versus x with a
sequence of dots at positions (x, f(x)). A line graphisastraightforward extension d this: the dots are smply
joined by line segmentsto form a palyline. Figure 2.19 shows an example, based onthe function:

Figure 2.19. A plot of amathematicad formula.
f(x) = 300- 100cos(2p x/100 + 30 cos(4p x/100) + 6 cos(6p x/100)

asx variesin steps of 3 for 100steps. A blow-up d thisfigure would show a sequence of conreded line
segments; in the normal size picture they blend together and appea as a smoathly varying curve.

The processof plotting a function with line segmentsis aimost identicd to that for producing a dat plot: the
program of Figure 2.17 can be used with orly dight adjustments. We must scade and shift the lines being
drawn here, to properly placethe linesin the window. This requires the computation o the constants A, B, C
and D in the same manner as we did before (seeEquation 21). Figure 2.20 shows the changes necessary for
the inner drawing loopin the myDisplay () function.

< Calculate constants A, B, C and D for scaling and shifting> |

Computer Graphics  Chap 2 094/99  102PM page 15



giBegin(GL_LINE_STRIP);
for(x = 0; x <= 300; x += 3)
glVertex2d(A * x + B, C * f(x) + D);
glEnd();
glFlush;

Figure 2.20. Plotting a function wsing aline graph.

Example 2.3.2. Drawing Polylines gored in afile.

Most interesting [ ctures made up d palylines contain arather large number of line segments. It's convenient
to store adescription d the palylinesin afile, so that the picture can be redrawn at will . (Several interesting
examples may be found onthe Internet - seethe Preface)

It's not hard to write aroutine that draws the palylines dored in afile. Figure 2.21 shows an example of what
might be drawn.

Figure 2.21. Drawing pdylines gored in afile. (file: fig2.21.bmp)

Suppae thefiledino.dat  containsa wlledion d paylines, in the following format (the comments are not
part of the fil e):
21 number of polylines in the file
4 number of points in the first polyline
169 118 first point of first polyline
174 120 second point of first polyline
179 124
178 126
5 number of points in the second polyline
298 86 first point of second polyline
304 92
310104
314114
314 119
29
32435
10 439
etc.

(The attire file is avail able on the web site for thisbook Seethe preface) Figure 2.22 shows aroutine in C++
that will open such afile, andthen draw ead o the palylinesit contains. The fil e having the name contained
inthe string fileName  isread in and ead pdylineis drawn. The routine cmuld be used in pdaceof
myDisplay () in Figure 2.17 asthe cdlbad function for the redraw event. The values of A, B, Cand D
would have to be chosen judicioudly to scde the palylines properly. We develop a general approach to dothis
in Chapter 3.

|void drawPolyLineFile(char *fileName)

Computer Graphics  Chap 2 094/99  102PM page 16



fstream inStream;
inStream.open(fileName, ios ::in); // open the file
if(inStream.fail())

return;
glClear(GL_COLOR_BUFFER_BIT); // clear the screen
GLint numpolys, numLines, x ,y;

for(int j = O; j < numpolys; j++) // read each polyline
inStream >> numLines;
glBegin(GL_LINE_STRIP); I/l draw the next polyline
for (inti = 0; i < numLines; i++)

inStream >> x >>y; I/ read the next x, y pair
glVertex2i(x, y);

}
glEnd();

}
glFlush();
inStream.close();

}

inStream >> numpolys; Il read the number of polylines

Figure 2.22. Drawing pdylines gored in afile.

Thisversion d drawPolyLineFile () doesvery little aror cheding. If the file caana be opened —
perhaps the wrong rame is passed to the function —the routine simply returns. If the file contains bad data,
such asred values where integers are expeded, the results are unpredictable. The routine & given shoud be

corsidered orly as a starting pant for developing a more robust version.

Example 2.3.3. Parameterizing Figures.

Figure 2.23 shows a simple howse onsisting o afew palylines. It can be drawn using code shown partialy

in Figure 2.24. (What code would be suitable for drawing the doa and window?)

Figure 2.23. A House.

void hardwiredHouse(void)

glBegin(GL_LINE_LOOP);
glVertex2i(40, 40); /I draw the shell of house
glVertex2i(40, 90);
glVertex2i(70, 120);
glVertex2i(100, 90);
glVertex2i(100, 40);
glEnd();
glBegin(GL_LINE_STRIP);
glVertex2i(50, 100); /I draw the chimney
glVertex2i(50, 120);
glVertex2i(60, 120);
glVertex2i(60, 110);
glEnd();
... Il draw the door
... Il draw the window

}

Figure 2.24. Drawing a house with “hard-wired” dimensions.

Computer Graphics  Chap 2 094/99  102PM page 17



Thisisnot avery flexible goproach. The position d ead endpant is hard-wired into this code, so
hardwirededHouse () can draw only one house in ore size and ore location. More flexibility isachieved if
we parameterizethe figure, and passthe parameter values to the routine. In thisway we cax draw famili es of
objeds, which are distingushed by dfferent parameter values. Figure 2.25 shows this approach. The
parameters gedfy the location d the pek of the rodf, the width of the house, and its height. The detail s of
drawing the chimney, doar, and window are left as an exercise.

void parameterizedHouse(GLintPoint peak, GLint width, GLint height)
/I the top of house is at the peak; the size of house is given
/I by height and width

giBegin(GL_LINE_LOOP);
glVertex2i( peak.x, peak.y); // draw shell of house
glVertex2i( peak.x + width / 2, peak.y - 3 * height /8);
glVertex2i( peak.x + width / 2 peak.y - height);
glVertex2i( peak.x - width / 2, peak.y - height);
glVertex2i( peak.x - width / 2, peak.y - 3 * height /8);

glEnd();

draw chimneyin the same fashion

draw the doar

draw the windowv

}

Figure 2.25. Drawing a parameterized house.
Thisroutine may be used to draw a “vill age” as shown in Figure 2.26, by making successve cdlsto

parameterizedHouse () with dfferent parameter values. (How isahouse “flipped” upside down? Can
all of the howsesin the figure be drawn using the routine given?)

53 [
%@a e

Figure 2.26. A “vill age” of houses drawn using parameterizedHouse ().

Example 2.3.4. Building aPolyline Drawer.

Aswe shall seg some gopli cations compute and store the vertices of apalylinein alist. It is natural,
therefore, to add to our growing toolbox o routines a function that accepts the list as a parameter and draws
the correspondng pdyline. The list might be in the form of an array, or alinked list. We show here the aray
form, and define the dassto hdd it in Figure 2.27.

class GLintPointArray{
const int MAX_NUM = 100;
public:
int  num;
GLintPoint ptfMAX_NUM];

}

Figure 2.27. Datatype for alinked list of vertices.

Figure 2.28 shows a posshble implementation o the palyline drawing routine. It also takes a parameter
closed :if closed isnorzerothelast vertex inthe palyline is conreded to the first vertex. The value of
closed setsthe agument of gIBegin (). The routine simply sends ead vertex of the payline to OpenGL.

void drawPolyLine(GlintPointArray poly, int closed)

glBegin(closed ? GL_LINE_LOOP : GL_LINE_STRIP);
for( inti=0;i<poly.num; i++)
glVertex2i( poly.pt[i].x, poly.pt[i].y);
glEnd();
glFlush();

Figure 2.28. A linked list datatype, and dawing a palyline or paygon
Computer Graphics  Chap 2 094/99  102PM page 18




2.3.3. Line Drawing using moveto () and lineto ().

Aswe noted ealier anumber of graphics s/stems provide line drawing toals based onthe functions

moveto () andlineto (). These functions are so commonit isimportant to be familiar with their use. We
shall fashion ou own moveto () andlineto () that operate by cdli ng OpenGL todls. In Chapter 3 we shall
also dve “uncer the hood' to seehow youwould buld moveto () andlineto () based onfirst principles, if
apowerful library like OpenGL were not avail able.

Reall that moveto () andlineto () manipulate the position d a hypaheticd pen, whose positionis cdled
the current position, or CP. We can summarizethe dfeds of the two functions as:

moveto (X, y): set CPto (x, y)
lineto (X, y): draw aline from C297(P to (X, y), and then updite CP to (X, y)

A linefrom (x,, y,) to (x,, ¥,) is therefore drawn using the two cdls moveto(x1, y1); lineto(x2,
y2) . A padyline based onthe list of points (xo, yo), (xl, v1), - » (Xn-1, Yn-1) iseasly drawn using:

moveto(x[0], y[O]);
for(inti=1;i<n;i++)
lineto(x[ ], Y[i]);
It is graightforward to build moveto () andlineto () ontop o OpenGL. To dothiswe must define and

maintain our own CP. For the cae of integer coordinates the implementation shown in Figure 2.29 would do
the trick.

GLintPoint CP; /l global current position

[1<<<<<<LLLLKLKKK MOVELD >>>>>>>>55>>>>
void moveto(GLint x, GLint y)

CP.x = x; CP.y =y; // update the CP
}

[l<<<<<<<<<<<< [ineTOo >>>>>>>>>>>>>>>>>
void lineto(GLint x, GLint y)

{
glBegin(GL_LINES); // draw the line
glVertex2i(CP.x, CP.y);
glVertex2i(x, y);
glEnd();
glFlush();
CP.x = x; CP.y =y; // update the CP
}

Figure 2.29. Defining moveto () and lineto () in OpenGL.

2.3.4. Drawing Aligned Rectangles.

A spedal case of apadygonisthe aligned rectangle, so cdled becaiseits sdes are digned with the
coadinate axes. We aould creae our own functionto draw an aligned recangle (how?), but OpenGL
provides the ready-made function:

glRecti(  GLint x1, GLint y1, GLint x2, GLint y2);

I/l draw a rectangle with opposite corners (x1, y1) and (x2, y2);
Il fill it with the current color;

This command draws the digned redangle based ontwo gven pdnts. In addition the redange isfill ed with
the aurrent color. Figure 2.30 shows what is drawn bythe cde:

Computer Graphics  Chap 2 094/99  102PM page 19



Figure 2.30. Two aligned recangles fill ed with colors.

glClearColor(1.0,1.0,1.0,0.0); // white background
glClear(GL_COLOR_BUFFER_BIT); // clear the window

glColor3f(0.6,0.6,0.6); /I bright gray
glRecti(20,20,100,70);

glColor3f(0.2,0.2,0.2); // dark gray
glRecti(70, 50, 150, 130);

glFlush();

Noticethat the sscondredangle is “painted over” the first one. We examine other “drawing modes’ in Chapter 10.

Figure 2.31 shows two further examples. Part a) isa “flurry” of randomly chasen aligned redangles, that might be

enerated by code such ast:
a). b).

Figure 2.31. a). Randam Flurry of redangles. b). a chedkerboard.

void drawFlurry(int num, int numColors, int Width, int Height)
/l draw num random rectangles in a Width by Height rectangle

for (inti=0;i<num; i++)

{
GLint x1 = random(Width); /I place corner randomly
GLintyl = random(Height);
GLint x2 = random(Width); Il pick the size so it fits
GLinty2 = random(Height);
GLfloat lev =random(10)/10.0; /I random value, in range 0 to 1
glColor3f(  lev,lev,lev); /I set the gray level
glRecti(x1, y1, x2, y2); I/l draw the rectangle

}

glFlush();

}
Part b) isthe familiar chedkerboard, with alternating gay levels. The exercises ask youto generate it.

2.3.5. Aspect Ratio of an Aligned Rectangle.

10 Recdl that random (N) returns a randamly-chosen value between Oand N - 1 (seeAppendix 3).
Computer Graphics  Chap 2 094/99  102PM page 20



The principal properties of an aligned redangle aeits sze pasition, color, and “shape”. Its sapeis
emboded initsasped ratio, and we shall be referringto the asped ratios of redangles throughou the book
The asped ratio of aredangleis smply theratio of itswidth to its height1:

width

edratio =
ap height

2.2)

Redangles with various asped ratios are shown in Figure 2.32..

Figure 2.32. Examples of asped ratios of aligned rectangles.

Redangle A hasthe shape of a pieceof 8.5 by 11linch paper laid onits s$de in the so-cdled landscape
orientation (i.e. width larger than height). It has an asped ratio of 1.294. Redangle B hasthe asped ratio of a
television screen, 4/3, and C is the famous galden rectangle described in Case Study 23. Itsasped ratio is
closetof =1.618034 Redangle D isasquare with asped ratio equal to 1, and E has the shape of a pieceof
standard paper in portrait orientation, with an asped ratio of .7727 Finaly, F istall and skinny with an
asped ratio of 1/f.

Practice Exercises.

2.3.1. Drawing the chedkerboard. (Try your hand at this before looking at the answers.)

Write the routine checkerboard(  int size) that draws the chedkerboard shown in Figure 2.31h Place
the chedkerboard with its lower left corner at (0,0). Each o the 64 squares has length size pixels. Choose
two nice mlorsfor the squares. Solution: Theij-th square has lower left corner at (i*size, j*size) for i =
0,..,7andj =0..7. The mlor can be made to alternate between (r,, g, b) and (r,, g,, b)) using

if(( 1+))%2 ==0)//ifi +]is even

glColor3f(r1, g1, bl);
else

glColor3f(r2, g2, b2);
2.3.2. Alternative ways to spedfy arectangle. An aigned redangle can be described in ather ways than by
two oppaite corners. Two passhiliti es are:
* jts center paint, height, and width;
* jtsupper left corner, width, and asped ratio.
Write functions drawRectangleCenter () and drawRectangleCornerSize() that passthese
aternative parameters.
2.3.3. Different Asped Ratios. Write ashort program that draws afill ed redangle of asped ratio R, where R
is pedfied bythe user. Initializethe display to a drawing spaceof 400 by 400Arrange the size of the
redangle so that it isaslarge @& possble. That is, if R> 1 it spansaaossthe drawing space andif R< 1 it
spans from top to batom.
2.3.4. Drawing the Parametrized house. Fill i n the detail s of parametrizedHouse () in Figure 2.25 so
that the doar, window, and chimney are drawn in their proper propartions for given values of height and
width .

1IAlert! Some authors define it as height / width.
Computer Graphics  Chap 2 094/99  102PM page 21



2.3.5. Scaling and positioning afigure using parameters. Write the function void
drawDiamond(GLintPoint center, int size ) that draws the simple diamond shown in Figure
2.33, centered at center , and having sizesize .

X
T >

[«

y
Figure 2.33. A simple diamond

Use thisfunctionto draw a “flurry” of diamonds as suggested in Figure 2.34.

o

Figure 2.34. A flurry of diamondks.

2.3.6. Filling Polygons.

So far we can draw urffill ed pdygorsin OpenGL, aswell as aligned redangles fill ed with asingle solid color.
OpenGL aso suppats filli ng more general palygors with a pattern or color. The restrictionisthat the
polygors must be cornvex

Convex polygon:
apaygonisconwvex if aline mnreding any two pdnts of the paygonlies entirely within the polygon

Several paygors are shown in Figure 2.35. Of these only D, E, and F are mnvex. (Chedk that the definition
of convexity isupheld for eat of these palygors.) D is certainly convex: all triangles are. Aisnot even
simple (recdl Chapter 1) soit canna be mnvex. Both B and C “bend inward” at some point. (Find two pdnts
on B such that the line joining them does nat lie entirely inside B.)

Figure 2.35. Convex and norconvex paygors.

To draw a mnvex pdygon kased on \ertices (X, ¥,), (X, Y1), ---» (X, Y,) use the usual li st of vertices, but place
them between aglBegin (GL_POLYGONand an glEnd ():

glBegin(GL_POLYGON);

glVertex2f(x0, y0);
glVertex2f(x1, y1);

Computer Graphics  Chap 2 094/99  102PM page 22



glVertex2f(  xn, yn);
glEnd();

It will befilledinthe arrent color. It can also be fill ed with a stipple pattern —seeCase Study 25, and later
we will paint imagesinto pdygors as part of applying a texture.

Figure 2.36 shows a number of fill ed convex pdygors. In Chapter 10 we will examine an algorithm for filli ng
any pdygon convex or nat.

Figure 2.36. Severa fill ed convex pdygors.

2.3.7. Other Graphics Primitives in OpenGL.
OpenGL supports the drawing of five other objeds as well. Figure 2.37 shows examples of each of them. To
draw a particular one the @mnstant shown with it isused in glBegin ().

Figure 2.37. Other geometric primiti ve types.
Thefallowing list explains the function of each of the five mnstants:

GL_TRIANGLES: takes the listed vertices three @ atime, and draws a separate triangle for
ead;

GL_QUADS: takes the vertices four at atime and draws a separate quadril ateral for ead;
GL_TRIANGLE_STRIP: draws a series of triangles based ontriplets of vertices: v,, v,, v,, then
Vv, V,, v, thenv,, v,, v,, etc. (in an order so that all triangles are “traversed” in the same way;

e.g. courterclockwise).

GL_TRIANGLE_FAN: draws a series of conreded triangles based based ontriplets of
vertices: v,, v,, V,, then v, v,, v,, thenv,, v,, v,, etc.

GL_QUAD_STRIP: draws a series of quadril aterals based onfoursomes of vertices: first v,
v, Vv, Vv, thenv, v, v, v, thenv,, v, v,, v, (in an order so that all quedrilaterals are

“traversed” in the same way; e.g. courterclockwise).

2.4. Simple Interaction with the mouse and keyboard.

Interactive graphics appli cations | et the user control the flow of a program by natural human mations. pointing
and clicking the mouse, and pressng various keyboard keys. The mouse position at the time of the dick, or the
identity of the key pressed, is made avail able to the appli cation program and is processed as appropriate.

Computer Graphics  Chap 2 094/99  102PM page 23



Reall that when the user presses or rel eases a mouse button, moves the mouse, or presss a keyboard key, an
event ocaur. Using the OpenGL Utility Todkit (GLUT) the programmer can register a call back function with
each of these events by using the foll owing commands:

glutMouseFunc( myMouse) which registers myMouse() with the event that occurs when the mouse
buttonis pressed o released;

glutMotionFunc(  myMovedMouse) which registers myMovedMouse() with the event that occurs
when the mouse is moved whil e one of the buttonsis pressd;

glutkeyboardFunc(  myKeyboard) which registers myKeyBoard () with the event that occurs when a
keyboard key is pressd.

We next seehow to use each of these.

2.4.1. Mouse interaction.
How is data ébou the mouse sent to the goplicaion? You must design the cdl badk function myMouse() to
take four parameters, so that it has the prototype:

void myMouse(int button, int state, int x, int y);

When a mouse event occurs the system call s the registered function, supdying it with values for these
parameters. The value of button  will be one of:

GLUT_LEFT_BUTTON, GLUT_MIDDLE_BUTTON, or GLUT_RIGHT_BUTTON,

with the obvious interpretation, and the value of state  will be one of; GLUT UPor GLUT DOWNThe
valuesx andy report the pasition d the mouse & the time of the event. Alert: The x valueis the number of
pixesfrom theleft of the window as expeded, but they valueis the number of pixels doan from the top of the
window!

Example 2.4.1. Placing dots with the mouse.

We start with an e ementary but important example. Each time the user presss down the left mouse button a
dot is drawn in the screen window at the mouse position. If the user presss the right button the program
terminates. The version of myMouse() shown next does the job. Because the y-value of the mouse position is
the number of pixels from the top of the screen window, we draw the dot, not at (x, y ), but at (x,
screenHeight  —y), where screenHeight  isasaumed here to be the height of the window in pixels.

void myMouse(int button, int state, int X, int y)

if(button == GLUT_LEFT_BUTTON && state == GLUT_DOWN)
drawDot(x, screenHeight -y);

else if(button == GLUT_RIGHT_BUTTON && state == GLUT_DOWN)

exit(-1);}

The argument of —1 in the standard function exit () simply returns —1 back to the operating system: It is
usually ignored.

Example 2.4.2. Spedfying arectangle with the mouse.

Here we want the user to be ale to draw redangles whose dimensions are entered with the mouse. The user
clicks the mouse & two pdnts which spedfy oppaite aorners of an aligned rectangle, andthe redangleis
drawn. The datafor eat rectangle need na be retained (except throughthe picture of the recdangle itself):
ead new redangle replaces the previous one. The user can clea the screen by pressng the right mouse
button.

The routine shown in Figure 2.38 stores the crner pointsin astatic  array corner[] . It ismade static

so values are retained in the aray between successve cdlsto the routine. Variable numCorners keepstradk
of how many corners have been entered so far: when this number reades two the redangle is drawn, and
numCorners isreset to 0.

void myMouse(int button, int state, int X, int y)

Computer Graphics  Chap 2 094/99  102PM page 24



static GLintPoint corner[2];

static int numCorners = 0; /Il initial value is O
if(button == GLUT_LEFT_BUTTON && state == GLUT_DOWN)
{

corner[ numcCorners].x = x;
corner[ numCorners].y =screenHeight -y; //flip y coordinate
numcCorners ++; I/l have another point

if(  numCorners == 2)

glRecti(corner[0].x, corner[0].y, corner[1].x, corner[1].y);

numCorners = 0; /I back to O corners
} }
else if(button == GLUT_RIGHT_BUTTON && state == GLUT_DOWN)
glClear(GL_COLOR_BUFFER_BIT); /I clear the window
glFlush();

}

Figure 2.38. A call back routine to draw redangles entered with the mouse.

An alternative method for designating a redangle uses ar ubber rectangle that grows and shrinks as the user
moves the mouse. Thisisdiscussed in detail in Sedion 10.3.3.

Example 2.4.3. Controlli ng the Sierpinski gasket with the mouse.

It is Smple to extend the Sierpinski gasket routine described ealier so that the user can spedfy the three
vertices of theinitial triangle with the mouse. We use the same processas in the previous example: gather the
threepointsin an array corners [], and when threepoints are avail able draw the Sierpinski gasket. The mea

of the myMouse() routine is therefore:

static GLintPoint corners[3];
static int numCorners = 0;
if(button == GLUT_LEFT_BUTTON && state == GLUT_DOWN)
{
corner[ numcCorners].x = x;
corner[ numCorners].y =screenHeight - y; /[ flip y coordinate
if(++ numCorners == 3)
Sierpinski(corners); I/l draw the gasket
numCorners = 0; // back to O corners
}
}
where Sierpinski() isthesame asin Figure 2.15 except the threevertices of the triangle are passed as parameters.

Example 2.4.4. Create a palyline using the mouse.

Figure 2.39 shows a palyline being created with mouse dicks. Here, instead of having each new point replace
the previous one we chooseto retain all the points clicked for later use. The user enters a successon of points
with the mouse, and each point is gored in the next avail able position of the array. If the array becomes full no
further points are accepted. After each click of the mouse the window is cleared and the entire aurrent polyline
isredrawn. The polylineis reset to empty if the right mouse button is pressd.

4 )

Next click here

/__— Click here first

N /
Computer Graphics  Chap 2 094/99  102PM page 25




Figure 2.39. Interadive aedion d apayline.

Figure 2.40 shows one posshle implementation. Note that last  keepstradk of the last index used so far in
the aray List[] ; it isincremented as ead new point is clicked, and set to —1to make the li sts empty. If it
were desirable to make use of the pointsin List  outside of myMouse(), the variable List could be made
global.

void myMouse(int button, int state, int X, int y)

#define NUM 20
static GLintPoint ListfNUM];
static int last = -1; /I last index used so far

/I test for mouse button as well as for a full array
if(button == GLUT_LEFT_BUTTON && state == GLUT_DOWN && last < NUM -1)

{

List[++last].x = x; // add new point to list
List [ last].y =screenHeight - y; // window height is 480
glClear(GL_COLOR_BUFFER_BIT); /I clear the screen
glBegin(GL_LINE_STRIP); // redraw the polyline
for( inti=0;i<=last; i++)
glVertex2i(List[ i].x, List[i].y);
glEnd();
glFlush();
}
else if(button == GLUT_RIGHT_BUTTON && state == GLUT_DOWN)
last = -1; Il reset the list to empty
}

| Figure 2.40. A pdlyline drawer based onmouse dicks.

M ouse motion.
An event of adifferent typeis generated when the mouseis moved (more than some minimal distance) while
some button is held down. The allback function, say myMovedMouse(), is registered with this event using

glutMotionFunc( myMovedMouse);

The @llback function must take two parameters and have the prototype: myMovedMouse(int X, inty );
Thevauesof x and y are of course the position of the mouse when the event occurred.

Example 2.4.4. “ Freehand” drawing with a fat brush.

Suppose we want to create a curve by sweeping the mouse along some trajedory with a button held down. In
addition we want it to seam that the drawing “brush” has a square shape. This can be accompli shed by
designing myMovedMouse() to draw a square at the airrent mouse positi on:

void myMovedMouse(int mouseX, int mouseY)

{
GLint x = mouseX; /[grab the mouse position
GLint y = screenHeight —mouseY; /[ flip it as usual
GLint brushSize = 20;
glRecti(x,y, X + brushSize, y + brushSize);
glFlush();
}

2.4.2. Keyboard interaction.

Asmentioned ealier, pressing a key onthe keyboard gueues a keyboard event. The cdlbadk function
myKeyboard () isregistered with this type of event throughglutKeyboardFunc  (myKeyboard ).
It must have prototype:

void myKeyboard(unsigned int key, int x, int y);

Computer Graphics  Chap 2 094/99  102PM page 26




The value of key isthe ASCII valuel? of the key pressed. The values x andy report the pasition o the mouse
at the time that the event occurred. (As before y measures the number of pixels down from the top of the
window.)

The programmer can capitali ze on the many keys on the keyboard to dfer the user alarge number of choices
toinvoke at any point in a program. Most implementations of myKeyboard () consist of alarge switch
statement, with acase for each key of interest. Figure 2.41 shows one posshility. Pressng ‘p’ draws adot at
the mouse positi on; pressng the left arrow key adds a point to some (global) list, but does no drawing®3,
pressng ‘E’ exits from the program. Note that if the user holds down the ‘p’ key and moves the mouse around
arapid sequenceof paintsis generated to make a “freehand” drawing.

void myKeyboard(unsigned chartheKey, int mouseX, int mouseyY)

GLint x = mousexX;
GLinty = screenHeight - mouseY; // flip the y value as always
switch( theKey)

case ‘p"
drawDot(x, y); // draw a dot at the mouse position
break;
case GLUT_KEY_LEFT: List[++last].x = x; // add a point
List [ lastl.y =vy;

break;
case ‘E’:
exit(-1); /lterminate the program
default:
break; // do nothing
}
}

Figure 2.41. An example of the keyboard cdlbad function.

2.5. Summary

The hard part in writing gaphics applicaionsis getting started: pulli ng together the hardware and software
ingredientsin a program to make the first few pictures. The OpenGL applicaion programmer interface(API)
helps enormoudy here, asit provides a powerful yet simple set of routines to make drawings. One of its grea
virtuesis device independence, which makes it possble to write programs for one graphics environment, and
use the same program withou changes in ancther environment.

Most graphics appli cations are written today for a windows-based environment. The program opens a window
onthe screen that can be moved andresized bythe user, and it responds to mouse dicks and key strokes. We
saw how to use OpenGL functions that make it easy to creae such a program.

Primiti ve drawing routines were gplied to making pictures compaosed of dats, lines, palylines, and pdygors,
and were combined into more powerful routines that form the basis of one's personal graphicstoalkit. Several
examplesill ustrated the use of these todls, and described methods for interading with a program using the
keyboard and mouse. The Case studies presented next offer additional programming examples that explore
deegoer into the topics discussed so far, or branch ou to interesting related topics.

2.6. Case Studies.

It is best whil e using thistext to try out new ideas as they are introduced, to solidify the ideas presented. This
isparticularly true in the first few chapters, since getting started with the first graphics programs often
presents a hurdle. To focus this eff ort, ead chapter ends with some Case Studies that describe programming
projeds that are bath interesting in themselves, and concentrate on the ideas developed in the chapter.

12 ASCII stands for American Standard Code for Information Interchange. Tables of ASCII values are readily

avail able on the internet. Also seeascii.html in the web site for this book

13 Names for the various “spedal” keyboard keys, such as the function keys, arrow keys, and “home”, may be found
intheincludefileglut.h .

Computer Graphics  Chap 2 094/99  102PM page 27




Some of the Case Studies are simple exercises that only require fleshing ou some pseudocode given in the
text, and then running the program throughits paces. Others are much more dallenging, and could be the
basis of amajor programming projed within a murse. It is always difficult to judge how much time someone
else will need to accomplish any projed. The “Level of Effort” that acaompanies ead Case Studyisarough
guessat best.

Level of Effort:

I: asimple exercise. It could be asdgned for the next class

II: an intermediate exercise. It probably needs sveral days for completiont4.

I1l': An advanced exercise. It would probably be assgned for two weeks or so ahead.

2.6.1. Case Study 2.1. Pseudo random Clouds of Dots.

(Level of Effort: 1) The randam number generator (RNG) random(N)  (seeAppendix 3) produces avalue
between 0and N-1 ead time it is cdled. It uses the standard C++ functionrand () to generate values. Each
value gpeasto berandamly seleded, andto have norelationto its predecessors.

In fad the successve numbersthat rand () prodices are not generated randamly at al, but rather througha
very regular mechanism where eat number nj is determined from its predecessor ni by a spedfic formula.

A typicd formulais:
nj = (nj-1 * A+ B) mod N (2.3)

where A, B, and N are suitably chosen constants. One set of numbers that works fairly well is: A=
1103515245B = 12345 and N = 32767 Multiplying n_, by A and adding B forms a large value, and the
moduo operation krings the value into the range 0 to N-1. The processbegins with some “seed” value chosen
for n,.

Because the numbers only give an appeaance of randamnessthey are cdl ed pseudo random numbers. The
chaces of the valuesfor A, B, and N are very important, and dlightly different values give rise to very
different characderistics in the sequence of numbers. More detail s can be foundin [knuth, weis98] .

Scatter Plots.

Some experimentsyield data wnsisting d many peirs of numbers (a, b)), and the goal isto infer visually how
the a-values and b-values are “related”. For instance, alarge number of people ae measured, and ore
wondersif there isa strongcorrelation ketween a person’s height and weight.

A scater plot can be used to gve visual insight into the data. The data for ead personis plotted asadat at
pasition (height, weight) so only the drawDot () tod isneeded. Figure 2.42 shows an example. It suggests
that a person’s height and weight are rougHy linealy related, althoughsome people (such as A) are
idiosyncratic, being \ery tall yet quite light.

Figure 2.42. A scatter plot of people’s height versus weight.

14 A “day of programming” means sveral two hou “sessons’, with plenty of thinking (and resting) time
between sesgons. It also assumes a reasonably skill ed programmer (with at least two semesters of
programming in hand), whois familiar with the idiosyncrasies of the language and the platform being wsed. It
does nat all ow for those dreadful hours we dl know too well of being stuck with some obscure bugthat
presents a brick wall of frustration urtil it i sferreted ou and squashed.

Computer Graphics  Chap 2 094/99  102PM page 28



Here we use scater plotsto visually test the quality of arandom number generator. Each time the function
random(N) iscdled it returnsavalueintherange 0..N - 1 that is apparently chosen at randam, urnrelated to
values previously returned from random(N).  But are successve values truly urrelated?

One simple test buil ds a scatter plot based on irs of successve values returned byrandom(N) . It cdls
random(N) twicein successon, and dotsthe first value against the second This can be dore using
drawDot ():

for( inti=0;i<num;i++)
drawDot(random(N), random(N));

orin"raw" OpenGL by pladngthefor loop ketween glBegin () andglEnd ():

glBegin(GL_POINTS);
for( inti=0;i<num;i++) // do it num times
glVertex2i(random(N), random(N));
glEnd();

It ismore dficient to doit the sscondway, which avoids the overhead associated with making many cdlsto
glBegin () andglEnd ().

Figure 2.43 shows atypicd plot that might result. There shoud be a ‘uniform” density of dots throughou the
sguare, to reasaure you that the values 0..N-1 occur with about equal li kelihood and that thereisno
discernible dependence between ore value and its siccesor.

Figure 2.43. A constellation d 500random dats.

Figure 2.44 shows what can happen with an inferior RNG. In a) thereistoo high adensity of certain values,
so the distributionis nat uniform in 0..N-1. In b) there is high correlation between a number and its siccesor:
when ore number is large the other tendsto be small. And ¢) shows perhaps the worst situation o all: after a
few dozen values have been generated the pattern repeats, and no rew dots are generated!

a. b). 0).

Figure 2.44. Scater plots for inferior random number generators.

Plotting dd constell ations such asthese can provide aroughfirst chedk onthe uniformity of the numbers
generated. It isfar from athoroughtest, however [knuth].

Write aprogram that produces randam dat plots, using some different RNG'sto producethe (x, y) pairs. Try
different constants A, B, and N in the basic RNG and seethe dfed this has onthe dot constell ations.
(Warning: if the dot constell ation suddenly “freezes’ such that no rew dats appea, it may be that the pattern
of numbersis smply repeding.)

2.6.2. Case Study 2.2. Introdu ction to Iterated Function Systems.

From his paradise no ore shall eve evct us
Computer Graphics  Chap 2 094/99  102PM page 29



David Hil bert, defending Cantor’s st theory

(Level of Effort: II.) The repetitive operation d drawing the Sierpinski gasket is an example of an iterated
function system (I FS), which we shall encourter a surprising nunber of times throughou the book Many
interesting computer-generated figures (fradals, the Mandelbrot set, etc.) are based on \eriations of it.

A hand cdculator provides atod for experimenting with a smple IFS: Enter some (positive) number num and
pressthe square roat key. This produces a new number ¥yAUMN. Pressthe square roct key again to take its
squere roct, yielding Y¥num. Keep dang thisforever..., or urtil satisfied. We ae iterating with the square
roat function, and ead result is used as the input for the next square roat. Aninitial value of num= 64 yields
the sequence 64, 8, 2.8284 1.68179... (Isthere avalue to which this squence @nverges?)

Figure 2.45 presents the system schematicaly, showing that ead output value isfed back to have its sjuare
root formed, again and again.
initial value: num

aEml o

a is a number
Figure 2.45. Taking the square roat repetiti vely.

In this example the function keing iterated isf(x) = \/?( , or symbdlicdly f(.) = \[ , the “square-rocater”. Other
functions f(.) can be used instead, such as:

« () =2(); the “doubder” doulesits argument;
« f(.) = cos(.); the “cosiner”;
f)=40)@A-() the “logistic” function, used in Chaos theory (see Chapter 3).

«f() = (.)2 +cfora cmnstant c;  used to define the Mandelbrot set (see Chapter 8);

It is ometimes helpful to gve aname to ead number that emerges from the IFS. We cdl the k-th such
number dk, and say that the processbeginsat k = 0 by“injeaing’ theinitial value dg into the system. Then

the sequence of values generated bythe IFSis:

do

di = f(do)

d2 = f(f(do))
dg = f(f(f(do)))

so d3isformed byapplying function f(.) threetimes. Thisiscdled thethird iterate of f() applied to the
initial value dg. More succinctly we can denate the k-th iterate of f() by

di = Kl (dg) (2.4)

meaning the value produced after f(.) has been applied k timesto dp. (Note: it does nat mean the value f(dp) is
raised to the k-th power.) We can also use the reaursive form and say:

dk = f(dk-1) fork=1,23,..., foragiven value of dp.

This squenceof values dp, d1, d2, d3, d4,... iscdled “the orbit of d,” for the system.

Example: The orbit of 64 for the functionf(.) = \f is64, 8, 2.8284 1.68179..., and the orbit of 10000is 100
10, 3.162278 1.77828.... (What is the orbit of 0? What is the orbit of 0.17?)

Computer Graphics  Chap 2 094/99  102PM page 30



Example: The orbit of 7 for the “doulder” f(.) = 2{.) is: 7, 14, 28, 56, 112, ... The k-th iterate is 7 * 2".

Example: The orbit of 1 for f(.) = sin(.) can be found wing ahand cdculator: 1, .8414 .7456 6784 ...,
which very dowly approaches the value 0. (What is the orbit of 1 for cos(.)? In particular, to what value does
the orbit converge?

Project 1: Plotting the Hailstone sequence.
Consider iterating the intriguing function f(.):
X

IE if X is eve

f()():\3x+1 if x is odc

(2.5)

Even valued arguments are aut in half, whereas odd ores are enlarged. For example, the orbit of 17 isthe
sequence 17, 52, 26, 13, 40, 20, 10, 5, 16, 8,4, 2, 1. . ..Once apower of 2 isreaded, the sequencefalls
“like ahail stone” to 1and kecomes trapped in a short repetitive gycle (which ore?. An urenswered question
in mathematicsis:

Unanswered Question: Does evey orbit fall to 1?

That is, does a positive integer exist, that when used as a starting pant and iterated with the hail stone
function, does not ultimately crash dowvn to 1? No ore knows, but the intricades of the sequence have been
widely studied (See[Hayes 1984 or numerous urces onthe internet, such as
www.cean.sfu.caorganics/papers/lagariad’.).

Write aprogram that plots the course of the sequencey, = (y,) versus k. The user gives astarting valuey,
between 1and 4000000000 (unsigned long’s will hod values of this $ze) Each valueyy, is plotted as
the paint (k, y,). Each plot continues urtil y, readesavalue of 1 (if it does...).

Because the hail stone sequence can be very long, and the values of y, can grow very large, it is es@entia to
scde the values before they are displayed. Recdl from Sedion 22 that appropriate values of A, B, C, and D
are determined so that when the value (k, y,) is plotted at screen coordinates:

sx=(A*k+B)
sy=(C*y . ¥ D) (2:6)

the entire sequencefits onthe screen.

Note that you dorit know how longthe sequencewill be, nor how largey, will get, until after the sequence
has been generated. A simple solutionisto runthe sequenceinvisibly first, keguing trad of the largest value
yBiggest attained byy, , aswell asthe number of iterations kBiggest required for the sequenceto read
1. These values are then used to determine A, B, C, and D. The sequenceisthen re-run and dotted.

To improve the final plot:
a. Draw horizontal and verticd axes,
b. Plot the logarithm of y, rather thany, itself;

A Curious question: What isthe largest yBiggest andwhat isthe largest kBiggest  encourtered for any
hail stone sequence with starting value between 1 and 1,000000?

Iterating with functions that produce points.

Iterating numbers throughsome function f(.) isinteresting enough but iterating points througha functionis
even more so, sincewe can use drawDot()  to buld patterns out of the diff erent points that emerge. So we
corsider afunction f(p) that takes one point p = (x, y) asinpu and produces ancther point asits output. Each
newly formed pant isfed bad into the same function again to generate yet another new point, as siggested
in Figure 2.46. Here p,, is used to crede the k-th iterate p_= f(p ), which is then fed badk to prodwcep, ,

etc.

Computer Graphics  Chap 2 094/99  102PM page 31



IOOi
Pk-1 Pk
f(.,.) >

P = (Xk Y ) is a point
Figure 2.46. Iterated function sequence generator for points.

Once ayain, we cdl the sequenceof paintsp, p, p,, ... the orbit of p .

Aside: The Sierpinski gasket seen asan IFS;
In terms of an IFSthe k-th da, p,, of the Sierpinski gasket isformed from p, , using:

P.= (P, + Tlrandam(3)] ) /2

whereit is understoodthat the x and y comporents must be formed separately. Thusthe function that is
iterated is.

f() = (() + T[randan(3)] ) / 2

Project 2: The Gingerbread Man.

The “gingerbread man” shown in Figure 2.47 is based onancther IFS andit can be drawn asadot
congtellation. It has beacome afamiliar creaure in chaos theory [peitgen88, gleick87, schroeder91] because it
isaform of “strange dtrador”: the successve dats are “attraced” into a region resembling a gingerbread
man, with curious hexagoral hales.

Figure 2.47. A Typicd Gingerbread Man.

There is norandamnessin the processthat generates the gingerbread man; ead new point q isformed from
the previous point p ac@rding to the rules:

gX =M(1+2L)-py +|px-LM| (2.7)
ay =pXx

where constants M and L are caefully chosen to scde and pdaiti on the gingerbread man onthe display. (The
valuesM = 40and L = 3 might be goodchaicesfor a 640 by 480 jxel display.)

Write aprogram that all ows the user to choose the starting pant for the iterations with the mouse, and draws

the dats for the gingerbread man. (If amouse is unavail able, one goodstarting pant is (115 121). ) Fix
suitable values of M and L in the routine, but experiment with ather values as well.

Computer Graphics  Chap 2 094/99  102PM page 32



Youwill naticethat for a given starting pant only a catain number of dots appeas before the pattern repeds
(so it stops changing). Different starting pants give rise to dfferent patterns. Arrange your program o that
you can add to the picture by inputing additional starting pants with the mouse.

Practice Exercise 2.6.1. A Fixed point on the Gingerbread man. Show that this processhas “fixed pdnt”:
((1+ LM, (1 + L)M). That is, the result of subjeding this point to the processof Equation 27 is the same
point. (Thiswould be avery uninteresting starting pant for generating the gingerbread man!)

2.6.3. Case Study 2.3. The Golden Ratio and Other Jewels.

(Level of Effort: I.) The aped ratio of aredangle is an important attribute. Over the centuries, one aped
ratio has been particularly cdebrated for its pleasing qualiti esin works of art: that of the golden recangle.
The gdlden recangle is considered as the most pleasing d al rectangles, being reither too rarrow nor too
sguat. It figuresin the Greek Parthenon (seeFigure 2.48), Leonardo da Vinci's Mona Lisa, Salvador Dali's
The Saadament of the Last Supper, andin much o M. C. Escher's works.

old Fig 3.18 (picture of Greek Parthenoninside golden recangl€)

Figure 2.48. The Greek Parthenonfitting within a Golden Redangle.

The golden redangle is based onafascinating qantity, the golden ratioj =1.618033989 The value |
appeasin asurprising nunber of placesin computer graphics.

Figure 2.49 showsagoden redange, with sides of lengthj and 1. Its $ape has the unique property that if a
sguare is removed from the redangle, the piecethat remains will again be agoden redangle! What value
must j have to make thiswork? Note in the figure that the small er redangle has height 1 and so to be golden
must have width 1/j . Thus

Figure 2.49. The Golden Redangle.

j=1+1
J (2.8)

which iseasily solved to yield

j =1+95 - 1 618033989..
2 (2.9

Thisis approximately the asped ratio of a standard 3-by-5 index card. From Equation 28 we see 4so that if 1
is sibtraded fromj theredprocd of j isobtained: 1/j =.618033989. . .Thisisthe asped ratio of agaden
redangle lying onits siort end.

The number | isremarkable mathematicdly in many ways, two favorites being

and

Computer Graphics  Chap 2 094/99  102PM page 33



1 +_J_
1 +_J_
1+ ... (2.11)

These bath are eay to prove (how?) and dsplay a pleasing simplicity in the use of the single digit 1.
The ideathat the golden redangle mntains a smaller version d itself suggests aform of “infinite regresson’

of figures...within figures...within figures... ad infinitum. Figure 2.50 cemonstrates this. Keg removing
sguares from ead remaining gdden recangle.

Figure 2.50. Infinite regressons of the golden redangle.

Write an application that draws the regresson d golden redangles centered in a screen window 600 pxels
wide by 400 pxels high. (First determine where and hav big the largest golden redangle is that will fit in this
screen window. Your picture shoud regressdown urtil the smallest redangle is about one pixel in size

There is much more to be said abou the golden ratio, and many delights can be foundin [Gardner 1961,
[Hill 1978, [Huntley 197Q, and [Ogil vy 1969. For instance, in the next chapter we seegolden pentagrams,
andin Chapter 9 we seethat two dof the platonic solids, the dodecaedron and the icosahedron, contain three
mutually perpendicular golden redangles!

Practice eercises.

2.6.2. Other gdlden things. Equation 210shows]j asarepeded sguare root involving the number 1. What
isthe value of:

vv:Jk+Jk+Jk+Jk+

2.6.3. Onjj and Golden Redangles. a). Show the validity of Equations 2.10 and 211

b). Find the point at which the two ddted dagorals siown in Figure 2.50lie, and show that thisis the point to
which the sequence of galden redangles converges.

¢). Use Equation 28 to derive the relationship:

j?+d=3

j? 2.12)
2.6.4. Golden orbits. The expressonsin Equations 2.10 and 211 show that the galden ratio j isthe limiting
value of applying certain functions again and again. The first functionisf(.) =/1 + (.) . What is the second
function? Viewing these expressonsin terms of iterated functions systems, j is ®ento be the value to which
orbits converge for some starting values. (The starting value ishidden in the “..." of the expressons.) Explore
with a hand cdculator what starting values one can use and till have the processconvergetoj .

2.6.4. Case Study 2.4. Building and Using Polyline Files.

(Level of Effort: II) Complex pictures such as Figure 2.21 are based onalarge @lledion d palylines. The
datafor the paylines are typicdly stored in afil e, so the picture can be reconstructed at a later time by
reading the paylinesinto a program and redrawing ead line. A reasonable format for such afile was
described in Sedion 23.1, and the routine drawPolyLineFile () wasdescribed that does the drawing.

Thefile, “dino .dat ", that storesthe dinosaur in Figure 2.21isavailable essdino.dat  onthe web site for
this book (seethe prefacg Other palyline files are dso avail able there.

a). Write aprogram that reads palyline data from afile and daws ead pdylinein turn. Generate & least one
interesting pdyline file of your own onatext processor, and use your program to draw it.
Computer Graphics  Chap 2 094/99  102PM page 34



b). Extend the program in the previous part to accept some other file formats. For instance, have it accept
differentially coded x- andy- coordinates. Here the first point (xl, yl) of ead pdylineisencoded as above,

but ead remaining ore (xj, yj) isencoded after subtrading the previous point from it: the file contains (X. =X
Y- yl_l). In many cases there ae fewer significant digitsin the differencethan in the original point values,
alowing more compad fil es. Experiment with this format.

¢). Adapt the fil e format above so that a “color value” is associated with ead pdyline in the file. This color
value gpeasin the file on the same line & the number of pointsin the assciated pdyline. Experiment with
several palylinefiles.

d). Adjust the polyline drawing routine so that it draws a dosed pdygonwhen aminus sgn precales the
number of pointsinapayline, asin:

-3 <-- negative: so thisisapaygon

0 0 first point in this paygon

35 3 second pont in this paygon

57 8 also conred thisto the first point of the paygon
5 <-- positive, so leave it open as usual

0 1

12 21

23 34

.. etc

Thefirst paylineisdrawn asatriangle: itslast point is conneded to itsfirst..

2.6.5. Case Study 2.5. Stippling of Lines and Polygons.
(Level of Effort: Il) You dten want alineto be drawn with a dot-dash pattern, or to have apoygonfill ed
with a pattern representing some image. OpenGL provides convenient toolsto dothis.

Line Stippling.
It is graightforward to define astipple pattern for use with line drawing. Oncethe patternis gedfied, it is
applied to subsequent line drawing as ©onasit is enabled with:

glEnable(GL_LINE_STIPPLE);

and urtil it i s disabled with

gIDisable(GL_LINE_STIPPLE).

The function

glLineStipple( GLint factor, GLushort pattern);

defines the stipple pattern. The value of pattern  (which is of type GLushort —an ursigned 16-bit
quantity) is a sequence of 0'sand 1 sthat define which dasaongthe line ae drawn: a1l prescribes that a dot
isdrawn; a0 prescribesthat it isnaot. The pattern is repeaed as many times as necessary to draw the desired
line. Figure 2.51 shows sveral examples. The pattern is given compadly in hexadedmal natation. For
example, OXEECC spedfiesthe bit pattern 1110111011001100 he variable factor  spedfies how much to
“enlarge” pattern : ead hit in the pattern is repeaed factor  times. For instance, the pattern OXEECC
with fador 2 yields: 1111110011111100111100001111008Men drawing a stippled pdyline, as with
glBegin(GL_LINE_STRIP); glVertex*(); glVertex*(); glVertex*(); . . .

glEnd();, the pattern continues from the end d one line segment to the beginning o the next, until the
glEnd()

pattern  factor reulting stipple

Ox00FF 1 e e e

Ox00FF 2 e e
OXAAAA 1

OXAAAA 2

Computer Graphics  Chap 2 094/99  102PM page 35



OXxEECC 1

Figure 2.51. Example stipple patterns.

Write aprogram that all ows the user to typein apattern  (in hexadedmal notation) and a value for fad or,
and draws gippled lineslaid down with the mouse.

Polygon Stippling.

It isalso na difficult to define agtipple pattern for filli ng a palygon but there ae more detail s to cope with.
After the pattern is edfied, it is applied to subsequent paygonfilli ng orceit is enabled with

glEnable (GL_POLYGON_STIPPLE) until disabled with glDisable (GL POLYGONSTIPPLE).

The function

glPolygonStipple( const GLubyte * mask);

attaches the stipple pattern to subsequently drawn pdygors, based ona 128 byte aray mask[] . These 128
bytes provide the bits for a bitmask that is 32 htswide and 32 lits high. The patternis “tiled” throughou the
paygon (which isinvoked with the usual glBegin(GL_POLYGON);  glVertex*();. . .;

glEnd(); ).Thepatternis edfied byan array definition such as:

GLubyte mask[] = {Oxff, Oxfe, 0x34, ... };

Thefirst four bytes prescribe the 32 bits acrossthe battom row, from left to right; the next 4 bytes give the next
row up, etc. Figure 2.52 shows the result of filli ng a spedfic polygon with a “fly” pattern spedfied in the
OpenGL “red bodk” [wo097].

Figure 2.52. An example stippled pdygon

Write aprogram that defines an interesting stipple pattern for a palygon It then all ows the user to lay down a
sequence of convex pdygons with the mouse, and ead pdygonisfill ed with this pattern.

2.6.6. Case Study 2.6. Polyline Editor.

(Level of Effort: IIl) Drawing programs often all ow one to enter palylines using a mouse, and then to edit the
polylines until they present the desired picture. Figure 2.53a shows a house in the processof being dawn: the
user hasjust clicked at the paosition shown, and a line has been drawn from the previous paint to the mouse

Si&dd points b).Move a point c).Delete a point
. - bl
L3 O O

B |

Figure 2.53. Creding and editing pdylines.

Figure 2.53bshows the dfed of moving a point. The user paositions the mouse aursor nea some palyline
vertex, presses down the mouse button, and “drags’ the chosen pdnt to some other location before releasing
the mouse button. Uponrelease, the previous lines conreded to this point are eased, and rew lines are drawn
toit.

Computer Graphics  Chap 2 094/99  102PM page 36



Figure 2.53c shows how apoint is deleted from a palyline. The user clicks nea some palyline vertex, and the
two line segments conreded to it are aased. Then the two “other” endpdnts of the segmentsjust erased are
conreaed with aline segment.

Write and exercise aprogram that all ows the user to enter and edit pictures made up d as many as 60
palylines. The user interads by pressng keyboard keys and panting/clicking with the mouse. The
functionality of the program shoud include the “adions’:

* begin ('b) : (creae anew palyline)

* delete (‘d): (delete the next point pointed to)

*move (‘m’): (drag the paint pointed to new locaion)

« refresh ('r'): (erase the screen and redraw all the palylines)
e quit (‘q): (exit from the program)

A list of pdylines can be maintained in an array such as. GLintPointArray polys[60 ]. Theverb
begin , adivated by gressngthe key ‘b’, permits the user to creae anew payline, which is gored in the
first available “dot” in array polys . Theverb delete requiresthat the program identify which pant of
which pdylinelies closest to the aurrent mouse point. Onceidentified, the “previous’ and “next” verticesin
the chosen pdyline ae found The two line segments conreded to the chosen vertex are gased, and the
previous and rext vertices are joined with a line segment. The verb move finds the vertex closest to the
current mouse point, and waits for the user to click the mouse asecondtime, at which pdnt it moves the
vertex to this new point.

What other functions might you want in a payline eitor? Discusshow you might save the aray of paylines
inafile, andread it inlater. Also dscusswhat a reasonable mechanism might be for inserting a new point
inside apalyline.

2.6.7. Case Study 2.7. Building and Running Mazes.

(Level of Effort: Ill) Thetask of finding a path througha mazeseems forever fascinating (see[Ball and
Coxeter 1974). You can generate an elaborate mazeon a computer, and wse graphics to watch it be traversed.
Figure 2.54 shows aredanguar mazehaving 100rows and 150columns. The goal isto find a path from the
opening at the left edge to the opening at the right edge. Although youcan traverse it manually by trial and
error, it's more interesting to develop an algorithm to doit automaticdly.

use 1* Ed. Figure 3.38

Figure 2.54. A maze

Write and exercise aprogram that a). generates and dsplays aredanguar mazeof R rows and C columns,
and b). finds (and dsplays) the path from start to end. The mazes are generated randamly but must be proper;
that is, every ore of the R-by-C cdlsis conneded byaunique, abeit tortuous, path to every other cdl. Think
of amaze @ agraph, as suggested by Figure 2.55. A nocdk of the graph corresponds to ead cdl where dther a
path terminates or two paths mee, and ead path is represented by a branch. So anode occurs at every cdl for
which thereisa chaoice of which way to go rext. For instance, when Q isreaded there ae three doices,
whereas at M there ae only two. The graph d a proper mazeis“acyclic” and has a “tree” structure.

use 1* Ed. Figure 3.39

Figure 2.55. A simple maze ad its graph.

How shoud a mazebe represented? One way isto state for ead cdl whether its north wall i sintad and its
east wall i sintad, suggesting the following deta structure:

char northWall[R][C], eastWall[R][C];
If northwall  [i][j] is1, theij-th cdl hasasolid upger wall; otherwise the wall i s misgng. The 0-th row

is a phantom row of cdls below the mazewhose north wall s comprise the bottom edge. Similarly,
eastwall [i][0] spedfieswhere any gaps appea in the left edge of the maze

Computer Graphics  Chap 2 094/99  102PM page 37



Generating aMaze Start with all wallsintad so that the mazeisasimple grid of horizontal and verticd
lines. The program draws this grid. Aninvisible “mouse” whose jobisto “eat” throughwall sto conred
adjacent cdls,” isinitially placal in some abitrarily chasen cdl. The mouse chedks the four neighba cdls
(abowve, below, left, and right) and for ead asks whether the neighba has all four wall sintad. If nat, the cdl
has previoudy been visited and so is already onsome path. The mouse may deted several candidate cdls that
haven't been visited: It chocses one randamly and eas throughthe conredingwall, saving the locations of
the other candidates on a stack. The eden wall i s erased, and the mouse repeas the process When it becomes
trapped in a dead end—surrouncded by \isited cdl s—it pops an unvisited cdl and continues. When the stack is
empty, all cdlsinthe mazehave been visited. A “start” and “end”’ cell i sthen chosen randamly, most likely
alongsome alge of the maze It is delightful to watch the mazebeing formed dyramicdly as the mouse eds
throughwalls. (Question: Might a queue be better than a stad to store candidates? How does this affed the
order in which later paths are aeaed?)

Running the Maze Use a ‘backtrading’ algorithm. At ead step, the mouse triesto move in arandam
diredion. If thereisnowall, it placesits position ona stadk and moves to the next cdl. The cdl that the
mouse isin can be drawn with ared da. When it runsinto a deal end, it can change the wlor of the cdl to
blue and tadktradk by poppng the stadk. The mouse can even pu awall upto avoid ever trying the dead-end
cdl again.

Addendum: Proper mazes aren't too chall enging kecause you can always traverse them using the “shouder-
to-the-wall rule.” Here you tracethe mazeby rubking you shouder alongthe left-hand wall. At adead end,
sweep aroundand retracethe path, always maintaining contad with the wall. Because the mazeis a “treg”
youwill ultimately read you destination. In fad, there can even be gyclesin the graph and youstill always
find the end, aslongas bath the start and the end cels are on ouer boundiries of the maze(why?). To make
things more interesting, placethe start and end cdlsin the interior of the maze ad also et the mouse ed
some extrawalls (maybe randamly 1in 20times). In thisway, some ¢ycles may be formed that encircle the
end cdl and defed the shodder method

2.9. For Further reading

Several books provide an introductionto using OpenGL. The “OpenGL Programming Guide” by Woo,
Neider, and Davis [wo097] isan excdlent source Thereisalso awedth o information avail able on the
internet. See for instance, the OpenGL repasitory at: http://www.opengl.org/, and the complete manual for
openGL at http://www.sgi.com/software/opengl/manual .html.

Computer Graphics  Chap 2 094/99  102PM page 38



(For ECE660- Fall, 1999

CHAPTER 3. More Drawing Too Is.

Computers are useless

They can only give you answers.

Pablo Picas®

Evenif youare ontheright trad, you'll
get run ower if you just sit there.

Will Rogers

Goals of the Chapter

Introduce viewports and clipping

Develop the window to viewport transformation

Develop aclasscal clipping algorithm

Create todsto draw in world coordinates

Develop a C++ classto encapsul ate the drawing routines

Develop ways to seled windows and viewports for optimum viewing
Draw complex pictures using relative drawing, and turtle graphics
Build figures based on regular polygons and their off spring

Draw arcs and circles.

Describe parametricall y defined curves and seehow to draw them.

Preview.

Sedion 31 introduces world coordinates and the world window. Sedion 32 describes the window to viewport
transformation. This transformation simplifies graphics appli cations by letting the programmer work in a
reasonable mordinate system, yet have dl pictures mapped as desired to the display surface The sedion also
discusses how the programmer (and wser) choose the window and viewport to achieve the desired drawings. A
key property isthat the asped ratios of the window and viewport must agree or distortion results. Some of the
chaces can be automated. Sedion 33 developsa dasscd clipping algorithm that removes any parts of the
picture that lie outside the world window.

Sedion 34 buldsauseful C++ classcdled Canvas that encapsul ates the many detail s of initiali zation and
variable handling required for a drawing program. Itsimplementationin an OpenGL environment is devel oped.
A programmer can use the todsin Canvas to make complex pictures, confident that the underlying datais
proteded from inadvertent mishandling.

Sedion 35 developsroutines for relative drawing and “turtle graphics’ that add handy methods to the
programmer’ stoalkit. Sedion 36 examines how to draw interesting figures based onregular polygors, and
Sedion 37 discusses the drawing d arcs and circles. The chapter ends with several Case Studies, including the
development of the Canvas classfor anon-OpenGL environment, where dl the detail s of clipping and the
window to viewport transformation must be explicitly developed.

Sedion 38 describes diff erent representations for curves, and develops the very useful parametric form, that
permits graightforward drawing o complex curves. Curvesthat reside in bah 2D space ad D space ae
corsidered.

3.1. Introdu ction.
It isasinteresting and & diffi cult to say a thing well asto pant it.
Vincent Van Gogh
In Chapter 2 ou drawings used the basic coordinate system of the screen window: coordinates that are
esentialy in pixels, extending from 0 to some value screenWidth  — 1in x, and from 0 to some value
screenHeight —1iny. Thismeansthat we can use only pasitive values of x andy, and the values must
extend ower alarge range (several hunded pixels) if we hope to get adrawing d some reasonable size.

Computer Graphics Chap 3 091/99 ‘38 PM page 1



In agiven problem, however, we may na want to think in terms of pixels. It may be much more natural to think
in terms of x varying from, say, -1 to 1, andy varying from —10Q0 to 200. (Recdl how awkward it wasto scde
andshift values when making the dot plotsin Figure 2.16.) Clealy we want to make aseparation between the
values we use in a program to describe the geometrica objeds and the size and pasition d the pictures of them
onthedisplay.

In this chapter we develop methods that let the programmer/user describe objedsin whatever coordinate system
best fits the problem at hand, and to have the picture of the objed automaticdly scded and shifted so that it
“comes out right” in the screen window. The spacein which oljeds are described is cdl ed world coor dinates.
It isthe usual Cartesian xy-coordinate system used in mathematics, based onwhatever units are convenient.

We define aredanguar world window? in these world coordinates. The world window spedfies which part of
the “world” shoud be drawn. The understanding is that whatever lies inside the window shoud be drawn;
whatever lies outside shoud be dipped away and nd drawn.

In addition, we define aredanguar viewport in the screen window on the screen. A mapping (consisting o
scdings and shiftings) between the world window and the viewport is establi shed so that when all the objedsin
the world are drawn, the partsthat lie inside the world window are aitomaticaly mapped to the inside of the
viewport. So the programmer thinksin terms of “looking throughawindow” at the objeds being dawn, and
pladng a “snapshat” of whatever is e in that window into the viewport on the display. This window/viewport
approach makes it much easier to do retural thingslike “zoomingin” onadetail i n the scene, or “panning
around a scene.

We first develop the mapping pert that provides the automatic change of coordinates. Then we seehow clipping
isdore.

3.2. World Windows and Viewports.
We use an example to motivate the use of world windows and viewports. Suppae you want to examine the
nature of a catain mathematica function, the “sinc” function famousin the signal processng field. It is defined

by

sin(px)

Jo)'¢
Youwant to know how it bends and wiggles as x varies. Suppase you knaw that as x variesfrom - ¥ t0 ¥ the
value of sinc(x) varies over much of therange—1to 1, andthat it is particularly interesting for values of x nea
0. So youwant a plot that is centered at (0, 0), and that shows sinc(x) for closely spaced x-values between, say,
—4.0to 4.0. Figure 3.1 shows an example plot of the function. It was generated using the simple OpenGL
display function (after a suitable world window and viewport were spedfied, of course):

sinc(x) = (3.1

Figure 3.1. A plot of the “sinc” function.

void myDisplay(void)

1as mentioned, the term “window” has a bewil dering set of meanings in graphics, which dften leads to confusion.
We will try to keep the diff erent meanings clea by saying "world window", “screen window", etc., when necessary.

Computer Graphics Chap 3 091/99 ‘38 PM page 2



glBegin(GL_LINE_STRIP);
for( GLfloat x =-4.0; x < 4.0; x +=0.1)

GLfloat y = sin(3.14159 * x) / (3.14159 * x);
glVertex2f(x, y);

glEnd();
glFlush();

}

Note that the code in these examples operatesin a natural coordinate system for the problem: x is made to vary
in small i ncrements from —4.0 to 4.0. The key isaue here is how the various (x, y) values become scded and
shifted so that the picture gopeas properly in the screen window.

We acomplish the proper scding and shifting bysetting upa world window and a viewport, and establishing a
suitable mapping ketween them. The window and viewport are both aligned redangles gedfied bythe
programmer. The window residesin world coordinates. The viewport isa portion o the screen window. Figure
3.2 shows an example world window and viewport. The nationis that whatever liesin the world window is
scaed and shifted so that it appeasin the viewport; the rest is clipped off and nd displayed.

Figure 3.2. A world window and a viewport.

We want to describe nat only how to “doit in OpenGL”, which is very easy, but also how it isdore, to gve
insight into the low-level algorithms used. We will work with orly a 2D version here, but will | ater seehow
these ideas extend returally to 3D “worlds’ viewed with a “camera”.

3.2.1. The mapping from the window to the viewport.

Figure 3.3 shows aworld window and viewport in more detail . The world window is described by its|eft, top,
right, and bottom barders as W.I, W.t, W.r, and W.b, respedivelyz. The viewport is described likewise in the
coardinate system of the screen window (opened at some placeon the screen), by V., V.t, V.r, and V.b, which
are measured in pixels.

2For the sake of brevity we use ‘I’ for ‘left’, ‘t’ for ‘top’, etc. in mathematica formulas.

Computer Graphics Chap 3 091/99 ‘38 PM page 3



Figure 3.3. Spedfying the window and viewport.

The world window can be of any size and shape andin any pdsition, aslongasit is an aligned redange.
Similarly, the viewport can be a1y aligned redangle, althoughit is of course usually chosento lie entirely
within the screen window. Further, the world window and viewport dor't have to have the same aped ratio,
athough dstortion resultsif their asped ratios differ. As suggested in Figure 3.4, distortion cccurs because the
figure in the window must be stretched to fit in the viewport. We shall seelater how to set up a viewport with an
asped ratio that always matches that of the window, even when the user resizes the screen window.

Ay A V.| Vir
W.t
V.t
W.l \q W.r @
N ] X V.b — .
\V|e\/\£00rt
W.b| Ny >
window s graphics
windows

Figure 3.4. A picture mapped from awindow to a viewport. Here some distortionis produced.

Given adescription d the window and viewport, we derive amapping or transfor mation, cdled the window-
to-viewport mapping. This mappingis based onaformulathat produces a paint (sx, sy) in the screen window
coordinates for any given pdnt (x, y) in the world. We want it to be a ‘propational” mapping, in the sense that
if xis, say, 40% of the way over from the left edge of the windaw, then sx is 40% of the way over from the left
edge of the viewport. Similarly if y is sme fradion, f, of the window height from the bottom, sy must be the
same fradion f up from the bottom of the viewport.

Propartionality forces the mappingsto have alinear form:

X=A*x+C (3.2)
y=B*y+D

for some @nstants A, B, C and D. The @nstants A and B scd e the x and y coordinates, and C and D shift (or
trandate) them.

How can A, B, C, and D be determined? Consider first the mapping for x. As siown in Figure 3.5,
propartionality dictates that (sx - V.I) isthe same fradion d thetotal (V.r - V.I) as (x - W.l) is of the total (W.r -
W.I), so that

R ol

W.I W.r V. V.r

Computer Graphics Chap 3 091/99 ‘38 PM page 4




Figure 3.5. Propartionality in mapping x to sx.

sx- VI _ _x-W.
Vr-V.I = W.r- W.I
or
V.r- V.l V.r- V.l
sx=—x + (V.| - ————W.I)
W.r- W.I W.r - W.l
Now identifying A as the part that multi plies x and C as the constant part, we obtain:
:L\”’C:VJ - AXW.I
W.r- W.I

Similarly, propationality in y dictates that

sy-V.b _ y-W.b
V.t- V.b = W.t- W.b

andwritingsy asBy + D yields:

g=-t" VD 5ovb- BwWb
W.t- W.b
Summarizing, the window to viewport transformation is.
x=Ax+C, sy=By+D
with (3.3
= V-V v A
W.r - W.I
:V't-—v'b’D:V_b- BXN.b
W.t- W.b

The mapping can be used with any paint (x, y) inside or outside the window. Points inside the window map to
pointsinside the viewport, and pants outside the window map to pdnts outside the viewport.

(Important!) Carefully chedk the following properties of this mapping wsing Equation 33:

a). if x isat the window’sleft edge: x = W.I, then sxis at the viewport'sleft edge: sx = V.I.

b). if xisat the window’sright edge then sx is at the viewport’sright edge.

). if xisfradionf of the way aadossthe windaw, then sxisfradion f of the way aadossthe viewport.

d). if x isoutside the windaw to the left, (x < w.l), then sx is outside the viewport to the left (sx < V.I), and
similarly if x isoutside to the right.

Also chedk similar properties for the mapping fromy to sy.

Example 3.2.1: Consider the window and viewport of Figure 3.6. The window has (W.I, W.r, W.b, W.t) = (0,
2.0, 0, 1.0) and the viewport has (V.I, V.r, V.b, V.t) = (40, 400, 60, 300).

Computer Graphics Chap 3 091/99 ‘38 PM page 5



Figure 3.6. An example of awindow and viewport.
Using the formulas in Equation 32.2 we obtain

A =180 C =40,
B=240D =60

Thus for this example, the window to viewport mappingis:

sx =180 x+ 40
sy =240y + 60

Chedk that this mapping properly maps various points of interest, such as.

 Each corner of the window isindeed mapped to the correspondng corner of the viewport. For example, (2.0,
1.0) mapsto (400, 300).

 The ceanter of the window (1.0, 0.5) maps to the ceanter of the viewport (220, 180).

Practice Exercise 3.2.1. Building the mapping. Find values of A, B, C, and D for the case of aworld window
10.0, 10.0, -6.0, 6.0) and aviewport (0, 600, 0, 400).

Doing it in OpenGL.
OpenGL makesit very easy to use the window to viewport mapping: it automaticdly passes ead vertex it is
given (via aglVertex2 *() command) througha sequence of transformations that carry out the desired

mapping. It also automaticdly clips off parts of objeds lying ouside the world window. All we need doisto set
up these transformations properly, and OpenGL does the rest.

For 2D drawing the world window is st by the function gluOrtho2D (), and the viewport is st by the function
glViewport (). These functions have prototypes:

void gluOrtho2D(GLdouble left, GLdouble right, GLdouble bottom, GLdouble
top);

which sets the window to have lower left corner (left , bottom ) and upper right corner (right , top ), and
void glViewport( GLint x, GLint y, GLint width, GLint height);
which sets the viewport to have lower |eft corner (x, y) and upper right corner (x + width  , y + height ).

By default the viewport is the entire screen window: if W and H are the width and height of the screen window,
respedively, the default viewport has lower left corner at (0, 0) and upper right corner at (W H) .

Computer Graphics Chap 3 091/99 ‘38 PM page 6



Because OpenGL uses matrices to set up al its transformations, gluOrtho2D ()3 must be preceded by two “ set
up’ functions gIMatrixMode(GL_PROJECTION)  and glLoadldentity (). (Wediscusswhat is going on
behind the scenes here more fully in Chapter 5.)

Thusto establi sh the window and viewport used in Example 3.2.1 we would use:

gIMatrixMode(GL_PROJECTION);

glLoadldentity();

gluOrtho2D(0.0, 2.0, 0.0, 1.0); /I sets the window
glViewport(40, 60, 360, 240); /I sets the viewport

Hereafter every point (X, y) sent to OpenGL using g Vertex2*(x, y) undergoes the mapping of Equation 3.3, and
edges are automatically clipped at the window boundary. (In Chapter 7 we seethe detail s of how thisis donein
3D, whereit also beaomes clear how the 2D version is sSmply a spedal case of the 3D version.)

It will make programs more readable if we encapsulate the mommands that set the window into a function
setWindow () as $own in Figure 3.7. We also show setViewport () that hides the OpenGL detail s of
glViewport  (..). Tomakeit easier to use, its parameters are dightly rearranged to match those of
setWindow (), sothey are bath in the order left , right , bottom , top .

Note that for conveniencewe use simply the type float for the parameters to setWindow (). The parameters | eft,
right, etc. are automatically cast to type Gldouble when they are passed to gluOrtho2D (), as pedfied by
this function's prototype. Similarly we use thetypeint for the parametersto setViewport (), knowing the
arguments to glViewport () will be properly cast.

e setWindow ---------------------
void setWindow(float left, float right, float bottom, float top)

gIMatrixMode(GL_PROJECTION);
glLoadldentity();
gluOrtho2D(left, right, bottom, top);

R setViewport ------------------
void setViewport(float left, float right, float bottom, float top)

glViewport(left, bottom, right — left, top - bottom);
}

Figure 3.7. Handy functions to set the window and viewport.

It is worthwhil e to look badk and seewhat we used for awindow and viewport in the ealy OpenGL programs
given in Chapter 2. In Figures 2.10 and 217 the programs used:

1).inmain() :
glutinitWindowSize(640,480); // set screen window size

which set the size of the screen window to 640by 480. The default viewport was used since no
glViewport () command was isaued; the default viewport isthe entire screen window.

2). in mylnit():
gIMatrixMode(GL_PROJECTION);
glLoadldentity();
gluOrtho2D(0.0, 640.0, 0.0, 480.0);

3 Theroat “ortho’” appeas because setting the window this way is acually setting upa so-caled
“orthographic” projedionin 3D, aswe'll seein Chapter 7.

Computer Graphics Chap 3 091/99 ‘38 PM page 7




This st the world window to the aligned redangle with corners (0,0) and (6400, 480.0), just matching the
viewport size. So the underlying window to viewport mapping ddn’t alter anything. This was a reasonable
first choicefor getting started.

Example 3.2.2: Plotting the sinc function —revisited.

Putting these ingredients together, we can seewhat it takes to plot the sinc() function shape of Figure 3.1. With
OpenGL it isjust a matter of defining the window and viewport. Figure 3.8 shows the required code, assuming
we want to plot the function from closely spaced x-values between —40 and 4.0, into a viewport with width 640
and height 480. (Thewindow is st to be alittl e wider than the plot range to leave some msmetic space aound
the plot.)

void myDisplay(void) // plot the sinc function, using world coordinates

setWindow(-5.0, 5.0, -0.3, 1.0); Il set the window

setViewport(0, 640, 0, 480); /Il set the viewport

glBegin(GL_LINE_STRIP);

for( GLfloat x =-4.0; x <4.0; x +=0.1) // draw the plot
glVertex2f(x, sin(3.14159 * x) / (3.14159 * x));

glEnd();

glFlush();

}

Figure 3.8. Plotting the sinc function.

Example 3.2.3: Drawing polylinesfrom afile.

In Chapter 2 we drew the dinasaur shown in Figure 3.9 using the routine drawPolylineFile (
“dino.dat ") of Figure 2.22. The palyline data for the figure was gored in afile “dino .dat ". Theworld
window and viewport had not yet been introduced, so we just took certain things on faith or by default, and
luckily still got a picture of the dinosaur.

Figure 3.9. The dinosaur inside its world window.

Now we an seewhy it worked: the world window we used happened to enclose the data for the dinosaur (see
Case Study 24): All of thepalylinesin dino.dat  lieinside aredangle with corners (0, 0) and (640, 480), so
none are dipped with this choice of a window.

Armed with tods for setting the window and viewport, we an take more wntrol of the situation. The next two
examplesill ustrate this.

Example 3.2.4. Tiling the screen window with the dinosaur motif.

To add some interest, we can draw a number of copies of the dinasaur in some pattern. If we lay them side by
side to cover the entire screen window it’s cdled tili ng the screen window. The picture that is copied at
different paositionsis often cdled amotif. Tiling a screen window is easily achieved by wsing a different
viewport for ead instance of the motif. Figure 3.10a shows atilinginvolving 25copies of the motif. It was
generated using:

a). b).

Computer Graphics Chap 3 091/99 ‘38 PM page 8



Figure 3. 10. Tili ng the display with copies of the dinosaur.

setWindow(0, 640.0, 0, 480.0); I set a fixed window
for(inti=0;i<5; i++) // for each column
for( intj=0;j<b5;j++) /I for each row

glViewport(i * 64, j * 44, 64, 44); // set the next viewport
drawPolylineFile(“dino.dat”); // draw it again

}

(It'seasier to use glViewport () here than setViewport (). What would the agumentsto setViewport ()
beif we choseto use it instead?) Each copyisdrawn in aviewport 64 by 48 jpxelsin size, whose aped ratio
64/48 matches that of the world window. This draws ead dinosaur withou any distortion.

Figure 3.10b shows ancther tili ng, but here dternate motifs are flipped upside down to produce an intriguing effed. Thiswa
dore by fli pping the window upside down every other iteration: interchangingthe top and bottom valuesin

setWindow ()%. (Ched that thisflip of the window properly affeds B and D in the window to viewport transformation of
Equation 3.3 to flip the picture in the viewport.) Then the precaling double logp was changed to:

for( inti=0;i<05;i++)
for( intj=0;j<b5;j++)

if((i +]) % 2==0) i ( i +])is even
setWindow(0.0, 640.0, 0.0, 480.0); // right side up window
else
setWindow(0.0, 640.0, 480.0, 0.0); // upside down window
glViewport(i * 64, | * 44, 64, 44); [/ set the next viewport
drawPolylineFile(“dino.dat”); // draw it again

}

Example 3.2.5. Clipping partsof a figure.

A picture @an also be clipped by proper setting of the window. OpenGL automatically clips off parts of objeds
that lie outside the world window. Figure 3.11a shows a figure onsisting of a coll edion of hexagons of different
sizes, each dightly rotated relative to its neighbor. Suppose it is drawn by exeauting some function hexSwirl ().
(We seehow to write hexSwirl () in Sedion 3.6.) Also shown in part a aetwo boaxes that indicate different
choices of awindow. Parts b and ¢ show what is drawn if these boxes are used for the world windows. It is
important to keeo in mind that the same entire ohjed is drawn in each case, using the amde:

4|t might seem easier to invert the viewport, but OpenGL does not permit a viewport to have anegative
height.

Computer Graphics Chap 3 091/99 ‘38 PM page 9



Figure 3.11. Using the window to clip perts of afigure.

setWindow(...); // the window is changed for each picture
setViewport(...); // use the same viewport for each picture
hexSwirl(); // the same function is called

What is displayed, on the other hand, depends on the setting of the window.

Zooming and roaming.

The example in Figure 3.11 points out how changing the window can produce useful effeds. Making the window
smaller ismuch like zooming in on the objed with a camera. Whatever isin the window must be stretched to fit
in the fixed viewport, so when the window is made small er there must be greater enlargement of the portion
inside. Similarly making the window larger is equivalent to zooming out from the objed. (Visualize how the
dinosaur would appear if the window were enlarged to twicethe sizeit hasin Figure 3.9.) A camera can also
roam (sometimes called “pan”) around a scene, taking in different parts of it at different times. Thisiseasily
accompli shed by shifting the window to a new positi on.

Example 3.2.6. Zooming in on a figure in an animation.

Consider putting together an animation where the amera z0ms in on some portion of the hexagonsin figure
3.11. We make a series of pictures, often call ed frames, using a dightly smaller window for each one. When the
frames are displayed in rapid successon the visual effed is of the amera zooming in on the objed.

Figure 3.12 shows a few of the windows used: they are @mncentric and have a fixed asped ratio, but their size
diminishes for each successve frame. Visualize what is drawn in the viewport for each of these windows.

Figure 3.12. Zooming in on the swirl of hexagons. (file: fig3.12.bmp)

Computer Graphics Chap 3 091/99 ‘38 PM page 10




A skeleton of the @mde to achieve thisis sown in Figure 3.13. For each new frame the screen is cleared, the
window is made smaller (about a fixed center, and with afixed asped ratio), and the figure within the window is
drawn in afixed viewport.

float cx=0.3,cy =0.2; //center of the window
float H, W = 1.2, aspect = 0.7; // window properties

set the viewport
for( int frame = 0; frame <NumFrames; frame++) // for each frame
{

clear the screen I/ erase the previous figure

W *= 0.7, /l reduce the window width

H =W * aspect; // maintain the same aspectratio
setWindow(cx - W, cx + W, cy - H, cy + H); //set the next window
hexSwirl(); // draw the object

}

Figure 3.13. Making an animation.

Achieving a Smoath Animation.
The previous approach isn’t completdy satisfying, because of the time it takes to draw each new figure. What the
user seesisarepetitive o/cle of:

a). Instantaneous erasure of the arrent figure;
b). A (posshly) dow redraw of the new figure.

The problem isthat the user seesthe line-by-line aeation of the new frame, which can be distracting. What the
user would like to seeis a repetitive gycle of:

a). A steady display of the arrent figure;
b). Instantaneous replacement of the airrent figure by the finished new figure;

Thetrick isto draw the new figure “somewhere dse”’ whil e the user stares at the arrent figure, and then to
move the mmpleted new figure instantaneoudly onto the user’s display. OpenGL offers double-buffering

to accomplish this. Memory is st aside for an extra screen window which is not visible on the actual display,
and all drawing is doneto this buffer. (The use of such “off-screen memory” is discussed fully in Chapter 10.)
The oommand glutSwapBuffers () then causes theimagein this buffer to be transferred onto the screen
window visibleto the user.

To make OpenGL reserve a separate buffer for this, use GLUT DOUBLEather than GLUT SINGLE in the
routine used in main () to initiali ze the display mode:

glutinitDisplayMode(GLUT_DOUBLE | GLUT_RGB); // use double buffering

The oommand glutSwapBuffers () would be placed dreadly after drawPolylineFile () in the ade of
Figure 3.13. Then, even if it takes a substantial period for the polyline to be drawn, at least the image will
change abruptly from one figure to the next in the animation, producing a much smoather and visually
comfortable dfed.

Practice Exercise 3.2.2. Whirling swirls. As ancther example of clipping and tili ng, Figure 3.14a shows the
swirl of hexagons with a particular window defined. The window is kept fixed in this example, but the viewport
varies with ead drawing. Figure 3.14b shows a number of copies of thisfigurelaid side by sideto tile the
display. Try to pick out the individual swirls. (Some of the swirls have been fli pped: which ores?) Theresult is
dazdingto the gye, in part due to the eye'syeaning to synthesize many small elementsinto an overall pattern.

Computer Graphics Chap 3 091/99 ‘38 PM page 11




Figure 3.14. a). Whirling hexagorsin afixed window. b). A tiling formed using many viewports.

Except for the fli pping, the ade shown next creaes this pattern. Function myDisplay () setsthe window once,
then draws the dipped swirl again and again in dfferent viewports.

void myDisplay(void)

clear the screen

setWindow(-0.6, 0.6, -0.6, 0.6); // the portion of the swirl to draw

for(inti=0; i <5;i++) /I make a pattern of 5 by 4 copies
for( intj=0;j<4;j++)

int L = 80; // the amount to shift each viewport
setViewport( i*L,L+i*L,j*L,L+j*L);// the next viewport
hexSwirl();
}
}
Type this code into an OpenGL environment, and experiment with the figuresit draws. Takinga aue from a
previous example, determine how to flip aternating figures upside down.

3.2.2. Setting the Window and Viewport Automatically.

We want to seehow to chocse the window and viewport in order to produce gpropriate pictures of ascene. In
some caes the programmer (or possbly the user at run-time) can inpu the window and viewport spedficaions
to achieve a cetain effed; in ather cases one or both of them are set up automaticdly, acording to some
requirement for the picture. We discussa few alternatives here.

Setting of the Window.

Often the programmer does not know where or how big the objed of interest liesin world coordinates. The
objeda might be stored in afil e like the dinosaur ealier, or it might be generated procedurally by some
algorithm whose detail s are not known. In such casesit is convenient to let the gplication determine agood
window to use.

The usual approach isto find awindow that includes the entire objed: to achieve thisthe objed’s extent must
be found The extent (or bounding box) of an oljed isthe digned redangle that just coversit. Figure 3.15
shows a picture made up d several line segments. The extent of the figure, shown as a dashed line, is (left,
right, battom, top) = (0.36, 3.44, -0.51, 1.75).

Computer Graphics Chap 3 091/99 ‘38 PM page 12




A (036175 extent

Figure 3.15. Using the Extent as the Window.

How can the extent be computed for a given oljed? If all the endpdnts of itslines are stored in an array pt [i ],
fori =0, 2, ...,n-1the extent can be cmmputed byfinding the extreme values of the x- and y- coordinatesin this
array. For instance, the left side of the extent isthe smallest of the valuespt[i].x . Oncethe extent is known,
the window can be made identicd to it.

If, onthe other hand, an oljed is procedurally defined, there may be noway to determine its extent ahead of
time. In such a cae the routine may have to be runtwice

Pass1: Exeaute the drawing routine, but do noacual drawing; just compute the extent. Then set the window.
Pass2: Exeaute the drawing routine ajain. Do the adual drawing.

Automatic setting of the viewport to Preserve Asped Ratio.

Suppase you want to draw the largest undstorted version d afigure that will fit in the screen window. For this
you reed to spedfy aviewport that has the same aped ratio as the world windov. A commonwish isto find
the largest such viewport that will fit inside the screen window on the display.

Suppase the aped ratio of the world window is know to be R, and the screen window has width W and height
H. There aetwo dgtinct situations: the world window may have alarger asped ratio than the screen window (R
> W/H), or it may have asmall er asped ratio (R < W/H). The two situations are shown in Figure 3.16.

Figure 3.16. Possble asped ratios for the world and screen windows.

Case §: R> W/H. Here the world window is short and stout relative to the screen window, so the viewport with
amatching asped ratio R will extend fully acossthe screen window, but will | eave some unused space &ove
or below. At itslargest, therefore, it will have width W and height W/R, so the viewport is %t using (chedk that
this viewport doesindeed have asped ratio R):

setViewport(0, W, 0, W/R);
Case b): R < W/H. Here the world window istall and rerrow relative to the screen window, so the viewport of

matching asped ratio R will read from the top to the bottom of the screen window, but will | eave some unused
spaceto the left or right. At itslargest it will have height H but width HR, so the viewport is %t using:;

Computer Graphics Chap 3 091/99 ‘38 PM page 13



setViewport(0, H * R, 0, H);

Example 3.2.7: A tall window. Suppcse the window has asped ratio R = 1.6 and the screen window hasH =
200 and W= 360 and hence W/H = 1.8. Therefore Case b) applies, and the viewport is st to have aheight of
200 pxelsand awidth of 320 pxels.

Example 3.2.8: A short window. Suppce R = 2 and the screen window is the same asin the example aowve.
Then case g applies, and the viewport is %t to have aheight of 180 pxelsand awidth of 360 pixels.

Resizing the screen window, and the resize event.

In awindows-based system the user can resize the screen window at run-time, typicdly by dragging ore of its
corners with the mouse. Thisadion generates aresize event that the system can respondto. Thereisafunction
in the OpenGL utility toadlkit, glutReshape () that spedfiesafunctionto be cdled whenever this event
occurs:

glutReshape( myReshape); //specifies the function called on a resize event

(This gatement appearsin main () along with the other call sthat spedfy call back functions.) The registered
function is also call ed when the window is first opened. It must have the prototype:

void myReshape(GLsizei W, GLsizei H);

When it is exeauted the system automaticall y passes it the new width and height of the screen window, which it
can usein its calculations. (GLsizei isa32hit integer — seeFigure 2.7.)

What should myReshape() do? If the user makes the screen window bigger the previous viewport could till be
used (why?), but it might be desired to increase the viewport to take advantage of the larger window size. If the
user makes the screen window small er, crossng any of the boundaries of the viewport, you amost certainly want
to recompute a new viewport.

Making amatched viewport.

One common approach isto find a new viewport that a) fitsin the new screen window, and b) has the same
asped ratio as the world window. “Matching” the asped ratios of the viewport and world window in this way
will prevent distortion in the new picture. Figure 3.17 shows a version of myReshape () that does this: it finds
the largest “matching” viewport (matching the asped ratio, R, of the window), that will fit in the new screen
window. The routine obtains the (new) screen window width and height through its arguments. Its codeisa
simple anbodiment of the result in Figure 3.16.

void myReshape(GLsizei W, GLsizei H)

if(R > W/H) // use (global) window aspect ratio
setViewport(0, W, 0, W/R);
else
setViewport(0, H * R, 0, H);
}

Figure 3.17. Using a reshape function to set the largest matching viewport uponaresize event.

Practice Exercises.

3.2.3. Find the bounding box for a polyline. Write a routine that computes the extent of the palyline stored in the
array of points pt[i] ,fori=0,2, ...,.n-1

3.2.4. Matching the Viewport. Find the matching viewport for awindow with asped ratio .75 when the screen
window has width 640and height 480

3.2.5. Centering the viewport. (Don’t skip thisone!) Adjust the myReshape() routine éove so that the
viewport, rather than lyingin the lower left corner of the display, is centered bah verticdly and haizontally in
the screen window.

3.2.6. How to sguash a house. Chocse awindow and a viewport so that a square is gjuashed to half its proper

height. What are the wefficients A, B, C, andD inthiscase?

Computer Graphics Chap 3 091/99 ‘38 PM page 14



3.2.7. Calculation of the mapping. Find the cefficients A, B, C, and D of the window to viewport mapping for
awindaw given by (-600, 235 -500, 125 and a viewport (20, 140, 30, 260). Does distortion accur for figures
drawn in the world? Change the right border of the viewport so that distortionwill not occur.

3.3. Clipping Lines.

Clippingisafundamental task in graphics, needed to keep those parts of an ojed that lie outside agiven
region from being dawn. A large number of clipping algorithms have been developed. In an OpenGL
environment ead ohjed isautomaticaly clipped to the world window using a particular algorithm
(which we examine in detail in Chapter 7 for bath 2D and 2 objeds.)

Because OpenGL clips for you there may be atemptationto skip a study d the dipping process But the ideas
that are used to develop a dipper are basic and arise in diverse situations; we will see avariety of approachesto
clippingin later chapters. Andit’ s useful to knov how to pul together a dipper as needed when atod like
OpenGL isnat being used.

We develop a dipping algorithm here that cli ps off outlying parts of ead line segment presented to it. This
algorithm can be incorporated in aline-drawing routine if we do not have the benefit of the dipping performed
by OpenGL. Animplementation d a dassthat draws clipped linesis developed in Case Study 33.

3.3.1. Clipping a Line.

In this dionwe describe a ¢assc line-clipping algorithm, the Cohen-Sutherland cli pper, that computes which
part (if any) of aline segment with endpdnts p1 and p2 liesinside the world window, and reports bad the
endpants of that part.

WEe'll developthe routine clipSegment  (pl1, p2, window) that takestwo 2D points and an aligned
redangle. It clipsthe line segment defined by endpdnts p1 and p2 to the window boundiries. If any pation o
the line remains within the window, the new endpdnts are placed in p1 and p2, and lisreturned (indicaing
some part of the segment isvisible). If the line is completely clipped ou, O isreturned (no pert isvisible).

Figure 3.18 shows atypicd situation covering some of the many passble adionsfor a dipper. clipSegment(
does one of four things to ead line segment:

Figure 3.18. Clipping Lines at window boundries.

« If the antire line lies within the window, (e.g. segment CD): it returns 1.
« If the antire line lies outside the window, (e.g. segment AB): it returns 0.

« If one endpdnt isinside the window and oreis outside (e.g. ssgment ED): the function clips the portion o the
segment that lies outside the window and returns 1.

« If bath endpdnts are outside the window, but a portion d the segment passes throughit, (e.g. segment AE): it
clips bath ends and returns 1.

There ae many passhble arangements of a segment with resped to the window. The segment can li e to the left,
to the right, abowve, or below the windaw; it can cut throughany ore (or two) window edges, and so on We
therefore need an arganized and efficient approach that identifies the prevaili ng situation and computes new
endpadnts for the dipped segment. Efficiency isimportant because atypicd picture containsthousands of line

Computer Graphics Chap 3 091/99 ‘38 PM page 15



segments, and ead must be dipped against the window. The Cohen—Sutherland algorithm provides a rapid
divide-and-conquer attack onthe problem. Other clipping methods are discussed beginning in Chapter 4.

3.3.2. The Cohen-Sutherland Clipping Algorithm
The Cohen-Sutherland algorithm quickly deteds and d spenses with two common cases, caled “trivial accept”
and “trivial rejed”. As shown in Figure 3.19, both endpdnts of segment

C

T
1
window :
1

Figure 3.19. Trivia acceptalnce or rgjedion d aline segment.

AB lie within window W, and so the whole segment AB must lie inside. Therefore AB can be “trivially
accepted”: it needs no clipping. This stuation accurs frequently when alarge window is used that encompasses
most of the line segments. On the other hand, bath endpdnts C and D lie entirely to ore side of W, and so
segment CD must lie entirely outside. It istrivially rejeded, and ndhingis drawn. This stuation arises
frequently when a small window is used with a dense picture that has many segments outside the window.

Testing for atrivial accept or trivial rejed.

We want afast way to deted whether aline segment can be trivially acceted o rejeded. To fadlit ate this, an
“inside-outside aode word” is computed for ead endpant of the segment. Figure 3.20 shows how it is dore.
Point P isto the left and above the window W. These two fads are recorded in a code word for P: aT (for
TRUE) is e in thefield for “isto the left of”, and “isabove”. An F (for FALSE) is £en in the other two
fields, “isto theright of”, and“ isbelow”.

Fmm e e - - - isP hel f W? .
isP totheleft o is P balow W?

isP above W? .
____________ is P to theright of W7

Figure |3.20. Encoding hav point P is dispased with resped to the window.

For example, if Pisinsidethewindow itscodeis FFFFE if P isbelow but neither to the left nor right its code is
FFFT. Figure 3.21 shows the nine diff erent regions possble, ead with its code.

TTFF FTFF FTTF

TFFF FFTF

TFFT FFFT FFTT

Figure 3.21. Inside-outside wdesfor a paint.

We form a code word for ead of the endpants of the line segment being tested. The condtions of trivial accept
andrejed are eaily related to these aode words:

Computer Graphics Chap 3 091/99 ‘38 PM page 16



Trivial accet: Both code words are FFFFE
Trivia rejed: the ade words have an F in the same paosition: bath pdnts are to the left of the window, or
bath are éowe, etc.

The adual formation d the mde words and tests can be implemented very efficiently using the bit
manipulation cgpabiliti es of C/ C++, as we describe in Case Study 33.

Chopping when thereis neither trivial accept nor rejed.

The Cohen-Sutherland algorithm uses a divide-and-conquer strategy. If the segment can neither be trivially
acceted na rejeded it is broken into two parts at one of the window boundaries. One part lies outside the
window andis discarded. The other part is potentially visible, so the entire processis repeaed for this egment
against ancther of the four window boundxries. This gives rise to the strategy:

do
{ formthe code wordsfor p1 and p2
if ( trivial accept) return 1;
if ( trivial rgjed) return O;
choptheline at the “ next” window border; discard the “ outside” part;
} while(2);

The dgorithm terminates after at most four times throughthe loop, since at ead iteration we retain orly the
portion d the segment that has “survived” testing against previous window boundxries, and there ae only four
such boundries. After at most four iterationstrivial accetanceor rejedionis asaured.

How isthe choppng at eat boundry dore?Figure 3.22 shows an example invalving the right edge of the
window.

1
4 L]
Window\ ! 0¢
tep | R N
: s> |aey
I
1
| P2 4—
bottom } @ -------------- | delx
1
1
1
] 1 =
left right

Figure 3.22. Clipping a segment against an edge.

Point A must be computed. Its x-coordinate is clealy W.right , theright edge position of the window. Itsy-
coordinate requires adjustingpl.y by the anourt d shown in the figure. But by similar triangles
d e

dely  delx
whereeispl.x - W.ight and:

delx = p2.x - pl.x; (3.9
dely = p2.y - pl.y;

are the diff erences between the mordinates of the two endpdnts. Thusd is easily determined, and the new
pl.y isfound byaddinganincrement to the old as

ply+=( W.right-pl.x) *dely/delx (3.5)

Computer Graphics Chap 3 091/99 ‘38 PM page 17



Similar reasoning is used for clipping against the other three @lges of window.

In some of the cdculationstheterm dely/ delx occurs, andin ahersitisdelx/ dely . One must awaysbe
corcerned abou dividing byzero, andin fad delx iszerofor averticd line, anddely isO0 for ahorizonta
line. But asdiscussed in the exercises the peril ous lines of code ae never exeauted when a denominator is zero,
so division byzero will not occur.

Theseideas are olleded in the routine clipSegment () shown in Figure 3.23. The endpdnts of the segment
are passd byreference, since danges made to the endpdnts by clipSegment () must bevisiblein the
cdlingroutine. (The type Point2 hddsa?2D point, and the type RealRect hddsan aligned redangle. Both
types are described fully in Sedion 34.)

int clipSegment(Point2& pl, Point2& p2,RealRect W)

dof
if( trivial accept) return 1; // some portion survives
if( trivial rgjed) return O; // no portion survives

if( plisoutside)
{

if( plistotheleft) chop aganst the left edge

else if( plistotheright) chop aganst theright edge
else if( plisbelow) chop aganst the bottom edge
else if( plisabove) chop aganst thetop edge

else /I p2 is outside

{
if( p2istotheleft) chop aganst the left edge

else if( p2istotheright) chop aganst the right edge
else if( p2isbelow) chop aganst the bottom edge
else if( p2isabove) chop aganst the top edge

)
Ywhile(1);

Figure 3.23. The Cohen-Sutherland line dipper (pseudacode).

Each time throughthe do loopthe ade for ead endpant is recomputed and tested. When trivial acceptance
andregjedionfail, the dgorithm tests whether p1 isoutside, andif so it clipsthat end d the segment to a
window boundxy. If pl isinside then p2 must be outside (why?) so p2 isclipped to awindow boundxy.

Thisversion d the dgorithm clipsin the order left, then right, then batom, and then top. The choice of order is
immaterial if segments are equally likely to lie anywhere in the world. A situation that requires all four clipsis
shovnin Figure 3.24. Thefirst clip

P2

P1 .
Figure 3.24. A segment that requires four clips.

Computer Graphics Chap 3 091/99 ‘38 PM page 18




changes p1 to A ; the semondalters p2 to B; the third finds p1 still outside and below and so changes Ato C;

andthe last changes p2 to D. For any choice of ordering for the chopping tests, there will always be asituation
in which all four clips are necessary.

Clippingisafundamental operation that has recaved alot of attention ower the yeas. Severa other approaches
have been developed. We examine some of them in the Case Studies at the end d this chapter, and in Chapter
4.

3.3.2. Hand Simulation of clipSegment ().

Go throughthe dipping routine by hand for the case of awindow given by (left, right, bottom, top) = (30, 220,
50, 240) and the foll owing li ne segments:

1). p1=(40,140), p2=(100200; 2). p1=(10,270), p2=(300,0);

3). p1=(20,10), p2=(20,200); 4). p1=(0,0), p2=(250,250);

In ead case determine the endpdnts of the dipped segment, and for avisual chedk, sketch the situation on
graph paper.

3.4. Developing the Canvas Class.
“ One must nat always think that fedingis eveaything.
Art isnathing without form” .
Gustave Flaubert

Thereis sgnificant freedom in working in world coordinates, and having primitives be dipped and properly
mapped from the window to the viewport. But this freedom must be managed properly. There ae so many
interading ingredients (points, recdangles, mappings, etc.) in the soup nav we shoud encgpsulate them and
restrict how the gplicaion programmer accesses them, to avoid subtle bugs. We shoud also insure that the
various ingredients are properly initialized.

It is natural to use dasses and the data hiding they offer. So we develop a dasscal ed Canvas that provides a
handy drawing canvas on which to draw the lines, palygors, etc. of interest. It provides smple methods to
crede the desired screen window and to establi sh a world window and viewport, and it insures that the window
to viewport mappingiswell defined. It also dfers the routines moveTo() and lineTo () that many
programmers find congenial, as well asthe useful “turtle graphics’ routines we develop later in the chapter.

There ae many ways to define the Canvas class the choice presented here shoud be considered orly asa
starting pant for your own version. We implement the dassin this edion wsing OpenGL, exploiting all of the
operations OpenGL does automaticaly (such as clipping). But in Case Study 34 we describe an entirely

diff erent implementation (based onTurbo C++ in a DOS environment), for which we have to supgy all of the
todls. In particular an implementation o the Cohen Sutherland clipper is used.

3.4.1. Some useful Supporting Classes.

It will be convenient to have some cmmon dhta types avail able for use with Canvas and aher classes. We
define them here & classes®, and show simple cnstructors and ather functions for handing oljeds of eah
type. Some of the dasses also have adraw functionto make it easy to draw instances of the dass Other
member functions (methods) will be alded later as the nead arises. Some of the methods are implemented
diredly in the dassdefinitions; the implementation o othersis requested in the exercises, and oy the
dedaration d the methodis given.

class Point2 : A point having real coordinates.

Thefirst supporting classembodies a single point expressed with floating point coordinates. It is 1own with two
constructors, the function set () to set the @ordinate values, and two functions to retrieve the individual
coordinate values.

class Point2

{

5 Students preferring to write in C can define simil ar types using struct's

Computer Graphics Chap 3 091/99 ‘38 PM page 19



public:
Point2() {x =y = 0.0f;} // constructorl
Point2(float xx, float yy) {x = xx; y = yy;} // constructor2
void set(float xx, float yy) {x =xx; y =yy;}
float getX() {return x;}
float getY() {return y;}
void draw(void) { gIBegin(GL_POINTS); // draw this point
glVertex2f((Glfloat)x, (Glfloat)y);
glEnd();}
private:
float x, y;

3

Notethat valuesof x andy are @ast tothetype Glfloat ~ when glVertex2f () iscalled. Thisismot likely
unnecessary sincethetype Glfloat  isdefined on most systemsasfloat  anyway.

class IntRect : An aligned redangle with integer coordinates.
To describe a viewport we need an ali gned redangle having integer coardinates. The dassIntRect  provides
this.

class IntRect

public:
IntRect() {l = 0; r =100; b = 0; t = 100;}// constructors
IntRect(int left, int right, int bottom, int top)
{I = left; r = right; b = bottom; t = top;}
void set(int left, int right, int bottom, int top)
{I = left; r = right; b = bottom; t = top;}
void draw(void); // draw this rectangle using OpenGL
private:
intl, r, b, t
h

class RealRect : An aligned redangle with real coordinates.

A world window requires the use of an aligned redangle having real values for its boundary position. (This
classis © similar to IntRect  some programmers would use templates to define a classthat could hold either
integer or real coordinates.)

class RealRect

{

same asintRect excet usefloat instead d int

h

Practice Exercise 3.4.1. Implementing the dasss. Flesh out these dasss by adding other functions you think
would be useful, and by implementing the functions, such asdraw () for intRect , that have only been
dedared abowe.

3.4.2. Declaration of Class Canvas.
We dedaretheinterfacefor Canvasin Canvas.h as siown in Figure 3.25. Its data members include the
current position, a window, a viewport, and the window to viewport mapping.

class Canvas {
public:
Canvas( int width, int height, char* windowTitle); // constructor
void setWindow(float |, float r, float b, float t);
void setViewport(int |, int r, int b, int t);
IntRect  getViewport(void); // divulge the viewport data
RealRect getWindow(void); // divulge the window data

Computer Graphics Chap 3 091/99 ‘38 PM page 20




float  getWindowAspectRatio(void);
void clearScreen();
void setBackgroundColor(float r, float g, float b);
void setColor(float r, float g, float b);
void lineTo(float x, float y);
void lineTo(Point2 p);
void moveTo(float x, float y);
void moveTo(Point2 p);
others later
private:
Point2 CP; /I current position in the world
IntRect viewport; // the current window
RealRect window; // the current viewport
others later

}

Figure 3.25. The header file Canvas.h.

The Canvas constructor takes the width and height of the screen window along with the titl e string for the
window. Aswe show below it creates the screen window desired, performing al of the appropriate

initi ali zations. Canvas also includes functions to set and return the dimensions of the window and the viewport,
and to control the drawing and background color. (Thereis no explicit mention of data for the window to
viewport mapping in this version, as this mapping is managed “silently” by OpenGL. In Case Study 3.4 we add
members to hold the mapping for an environment that requiresit.). Other functions sown are versions of

lineTo () and moveTo() that do the actual drawing (in world coordinates, of course). We add “relative drawing
tods’ in the next sedion.

Figure 3.26 shows how the Canvas classmight typically be used in an application. A single global ojed cvsis
created, which initiali zes and opens the desired screen window. It is made global so that call back functions sich
asdisplay () can“se€' it. (We @nnot passcvs as aparameter to such functions, astheir prototypes are fixed
by the rules of the OpenGL utility todkit.) Thedisplay () function here sets the window and viewport, and
then draws a line, using Canvas member functions. Then aredangleis created and drawn using its own member
function.

Canvas cvs(640, 480, “try out Canvas”); // create a global canvas object

fl<<<<<gggggg < display >>>>>>>5>>55>555>55>>>
void display(void)

cvs.clearScreen(); /I clear screen
cvs.setWindow(-10.0, 10.0, -10.0, 10.0);
cvs.setViewport(10, 460, 10, 460);

cvs.moveTo(0, -10.0); // draw a line

cvs.lineTo(0, 10.0);

RealRect box( -2.0, 2.0, -1.0, 1.0); // construct a box
box.draw(); /l draw the box

}

[]<<<<<<<<LLLLLLLL LKL MaAiN S>>>>>>>>>SS>>>SSSS>>SSSS>>>>>>>
void main(void)

/l the window has already been opened in the Canvas constructor
cvs.setBackgroundColor(1.0, 1.0, 1.0); // background is white
cvs.setColor(0.0, 0.0, 0.0); // set drawing color
glutDisplayFunc(display);
glutMainLoop();

}

Figure 3.26. Typicd usage of the Canvas class

Computer Graphics Chap 3 091/99 ‘38 PM page 21




The main () routine doesn’'t do any initi ali zaion: this has all been dore in the Canvas constructor. The routine
main () smply setsthe drawing and badgroundcolors, registers functiondisplay (), and enters the main
event loop. (Could these OpenGL-spedfic functions also be “buried” in Canvas member functions?) Note that
this appli cation makes almost no OpenGL -spedfic cdls, so it could easily be ported to another environment
(which used a different implementation d Canvas, of course).

3.4.3. Implementation of Class Canvas.

We show next some detail s of an implementation d this classwhen OpenGL is avail able. (Case Study 34
discusses an alternate implementation.) The wnstructor, shown in Figure 3.27, passs the desired width and
height (in pixels) to glutinitWindowSize (), and the desired titl e string to glutCreateWindow (). Some
fusdng must be dore to passglutinit () the aguments it needs, even thoughthey aren’t used here. (Normally
main () passes glutlnit () the ommmand line aguments, aswe saw ealier. Thiscan't be dore here sincewe
will use aglobal Canvasobjed, cvs , which isconstructed before main () is cdled.)

fI<<<<<ggggLLLL<LL<<<< Canvas constructor >>>>>>>>>>>>>>>>
Canvas:: Canvas(int width, int height, char* windowTitle)

{
char* argv[1]; /l dummy argument list for glutinit()
char dummysString[8];
argv[0] = dummysString; // hook up the pointer

intargc = 1; /I to satisfy glutinit()

glutinit(& argc, argv);

glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutinitWindowSize(width, height);

glutinitWindowPaosition(20, 20);

glutCreateWindow(windowTitle); // open the screen window
setWindow(O0, (float)width, O, (float)height); //default world window
setViewport(0, width, 0, height); // default viewport

CP.set(0.0f, 0.0f); [/l initialize the CP to (0, 0)

}

Figure 3.27. The monstructor for Canvas — OpenGL version.

Figure 3.28 shows the implementation of some of the remaining Carnvas member functions. (Others are
requested in the exercises.) Function moveTo() smply updates the arrent position; lineTo () sendsthe CP as
thefirst vertex, and the new paint (%, y) as the second vertex. Note that we don’t need to use the window to
viewport mapping explicitly here, since OpenGL automatically appliesit. The function setWindow () pasesits
arguments to gluOrtho2D () — after properly casting their types— and loads them into Canvas s window .

[1<<<<<LLLLLLLLLLLLLLLLLL LKL moveTo >>>>>5>5>5>5555>>>5>55>>
void Canvas:: moveTo(float x, float y)

CP.set(x, y);

[/1<<<<<<LLLLLLLLLLLLLLL LKL INET O >>>5555>>55555>>555>>>>
void Canvas:: lineTo(float x, float y)
{
glBegin(GL_LINES);
glVertex2f((GLfloat)CP.x, (GLfloat)CP.y);
glVertex2f((GLfloat)x, (GLfloat)y); /l draw the line
glEnd();
CP.set(x, y); // update the CP
glFlush();

}

fl<<<ggggggggggggggg<<<<<< set Window >>>>>55555555555555>>
void Canvas:: setWindow(float I, float r, float b, float t)

gIMatrixMode(GL_PROJECTION);
glLoadldentity();

Computer Graphics Chap 3 091/99 ‘38 PM page 22




gluOrtho2D((GLdouble)l, (GLdouble)r, (GLdouble)b, (GLdouble)t);
window.set(l, r, b, t);

}

Figure 3.28. Implementation of some Canvas member functions.

Practice Exercises.

3.4.2. Flesh out each of the member functions:
a). void setViewport(int |, intr, int b, int t);
b). IntRect getViewport(void);

c). RealRect getWindow(void);

d). void clearScreen(void);

€). void setBackgroundColor(float r, float g, float b);
f). void setColor(float r, float g, float b);
g). void lineTo(Point2 p);

h). void moveTo(Point2 p);

i). float getWindowAspectRatio(void)

3.4.3. Using Canvasfor a simulation: Fibonacc numbers. The growth in the size of arabbit popuationis
said to be modeled by the foll owing equation [gardner61]:

yk = yk-l + yk-2

where Y, isthe number of bunries at the k-th generation. This model says that the number in this generationis
the sum of the numbersin the previous two generations. The initial popuations are y,=1 and y =1 Successve
values of y, are formed by substituting ealier values, and the resulting sequenceis the well -known Fibonacd
sequence 1, 1, 2, 3,5, 8, 13. . . .A plot of the sequencey versusk revedsthe nature of this growth pattern.
Use the Canvas classto write aprogram that draws sich a plot for a sequence of length N. Adjust the size of
the plot appropriately for different N. (The sequence grows very rapidly, so youmay insteal wish to plot the
logarithm of y, versusk.) Also plot the sequence of ratios P.=Y, / Y, and watch haw quickly thisratio
converges to the golden ratio.

3.4.4. Another Simulation: sinusoidal sequences. The following dff erence euation generates a sinusoidal
sequence

y=ay -y, fork=12 ...

where aisa mnstant between Oand 2 Y, isOfor k <0; and y,=1 (see[oppenheim83)). In general, one gy/cle

corsists of Spantsif we set a= 2« cog(2p/S). A good pcture results with S=40. Write aroutine that draws
sequences generated in this fashion, and test it for various values of S

3.5. Relative Drawing.

If we aldjust afew more drawingtoadlsto ou tod bag (which isthe emerging classCanvas) certain drawing
tasks beacome much simpler. It is often convenient to have drawing take place &the aurrent position (CP), and
to describe positi ons relative to the CP. We develop functions, therefore, whose parameters gedfy changesin
pasition: the programmer spedfies how far to goalongead coordinate to the next desired pant.

3.5.1. Developing moveRel() and lineRel().
Two new routines are moveRel () andlineRel (). The function moveRel () iseasy: it just “moves’ the CP

throughthe displacement (dx, dy). The function lineRel  (float dx, float dy) doesthistoo, but it
first draws aline from the old CP to the new one. Both functions are shown in Figure 3.29.
void Canvas :: moveRel(float dx, float dy)

CP.set(CP.x + dx, CP.y + dy);

Computer Graphics Chap 3 091/99 ‘38 PM page 23




}

void Canvas :: lineRel(float dx, float dy)

float x = CP.x + dx, y = CP.y + dy;
lineTo(X, y);
CP.set(x, y);

}

Figure 3.29. The functions moveRel () and lineRel ().

Example 3.5.1. An arr ow marker. Markers of different shapes can be placed at various pointsin a drawing to
add emphasis. Figure 3.30 shows pentagram markers used to highlight the data pointsin aline graph.

> X

1 2 3 4 5 6
Figure 3.30. Pladng markers for emphasis.

Because the same figure is drawn at several different pointsit is convenient to be ale to say smply
drawMarker () and haveit be drawn at the CP. Then the line graph o Figure 3.30 can be drawn alongwith the
markers using code suggested by the pseudocode:

moveTo(first data point);
drawMarker(); /[ draw a marker there
for(each remaining data point)

lineTo(the next point); // draw the next line segment
drawMarker(); /I draws it at the CP

}

Figure 3.31 shows an arrow-shaped marker, drawn using the routine in Figure 3.32. The arow is positioned
with its uppermost point at the CP. For flexibility the arow shape is parameterized throughfour size parameters
f, h, t, andw as shown. Functionarrow() usesonlylineRel (), and noreferenceis made to absolute
positions. Also nde that althoughthe CPis altered while drawingis going on at the end the CPhas been set
back toitsinitial position. Hencethe routine produces no “side dfeds’ (beyondthe drawing itself).

—— worldCP

]

> <—><c<>
w t w

Figure 3.31. Model of an arrow.

void arrow(float f, float h, float t, float w)

{ /I assumes global Canvas object: cvs
cvs.lineRel(-w - t/ 2, -f); /[ down the left side
cvs.lineRel(w, 0);

Computer Graphics Chap 3 091/99 ‘38 PM page 24




cvs.lineRel(0, -h);

cvs.lineRel(t, 0); Il across
cvs.lineRel(0, h); I/l back up
cvs.lineRel(w, 0);

cvs.lineRel(-w -t/ 2, );

}

Figure 3.32. Drawing an arrow using relative moves and draws.

3.5.2. Turtle Graphics.

The last tod we ald for now is surprisingly convenient. It kegpstradk nat only of “where we ae” with the CP,
but also “the diredion in which we ae headed”. Thisisaform of turtlegraphics, which has been foundto be a
natural way to program in gaphics6. The nationisthat a “turtle”, which is conceptually similar tothe penina
pen plotter, migrates over the page, leaving atrail behinditself which appeas as aline segment. Theturtleis
positioned at the CP, healed in a cetain dredion cdled the curre nt direction, CD CDis the number of
degrees measured courterclockwise (CCW) from the positive x-axis.

It iseasy to add functionality to the Canvas classto “control the turtle”. First, CDis added as a private data
member. Then we add threemethodk:

1). turnTo(float angle). Turn the turtle to the given angle , implemented as:
void Canvas:: turnTo(float angle) {CD = angle;}
2). turn(float angle ). Turn theturtle through angle degrees courterclockwise:

void Canvas:: turn(angle){CD += angle;}

Use anegative agument to make aright turn. Note that aturn isarelative diredion change: we don't spedfy
adiredion, only a change in diredion. This smple distinction pgrovides enormous power in drawing complex
figures with the turtle.

3). forward(float dist, int isVisible) . Movetheturtle forward in a straight line from the CP
throughadistancedist inthe aurrent direcion CQ and updite the CP. If isVisible isnorzero avisible
line is drawn; otherwise nothingis drawn.

Figure 3.33 shows that in gdng forward in dredion CD the turtle just movesin x throughthe anourt dist *
cos(p * CD/180) and iny through the amount dist * sin(p * CD/180), so theimplementation of forward () is
immediate:

new worldCP

&
CD

old worldCP

Figure 3.33. Effed of the forward()  routine.

void Canvas:: forward(float dist, int isVisible)

{

8 ntroduced by Seymour Papert at MIT as part of the LOGO languege for teading chil dren how to program. See
e.g. [Abel81]

Computer Graphics Chap 3 091/99 ‘38 PM page 25




const float RadPerDeg = 0.017453393; //radians per degree
float x = CP.x + dist * cos(RadPerDeg * CD);
float y = CP.y + dist * sin(RadPerDeg * CD);
if(isVisible)
lineTo(X, y);
else
moveTo(X, y);

}

Turtle graphics makes it easy to buld complex figures out of smpler ones, as we seein the next examples.

Example 3.5.2. Building afigure upon a hook motif. The 3-segment “hook’ motif shown in Figure 3.34a can
be drawn using the commands:

forward(3 * L, 1); // L is the length of the short sides
turn(90);

forward(L, 1);

turn(90);

forward(L, 1);

turn(90);

for some choice of L. Suppase that procedure hook () encapsulates these instructions. Then the shape in Figure
3.34bisdrawn using four repetitions of hook() . The figure can be positioned and aiented as desired by
choices of theinitial CPand CD

a). b).

motif

Figure 3.34. Building afigure out of several turtle motions.

Example 3.5.3. Polyspirals. A large family of pleasing figures call ed palyspirals can be generated easily using
turtlegraphics. A polyspiral isa polyline where each successve segment islarger (or smaller) than its
predecessor by afixed amount, and oriented at some fixed angle to the predecessor. A polyspiral isrendered by
the foll owing pseudocode:

for(<some number of iterations>)

forward(length,1); // draw a line in the current direction
turn(angle); I/ turn through angle degrees
length += increment; I/l increment the line length

}

Each time alineisdrawn bah itslength and dredion are incremented. If increment s 0, the figure neither
grows nor shrinks.. Figure 3.35 shows veral palyspirals. The implementation d thisroutine is requested in the
exercises.

Computer Graphics Chap 3 091/99 ‘38 PM page 26




Figure 3.35. Examples of payspiras. Angles are: a). 60, b). 89.5, ). -144, d). 170

Practice Exercises.

3.5.1. Drawing Turtle figures. Provide routines that use turtle motionsto draw the threefigures siownin
Figure 3.36. Can the turtle draw the shapein part ¢ withou “lifting the pen” and withou drawing any line
twice?

a). b). c).

Figure 3.36. Other Simple Turtle Figures.

3.5.2. Drawing awell-known logo. Write aroutine that makes a turtle draw the outline of the logoshown in
Figure 3.37. (It nea na fill the palygors.)

Figure 3.37. A famous loga

3.5.3. Driving the Turtle with Strings. We can use ashorthand ndationto describe afigure. Suppose

F means forward(d, 1); {for some distanced}
L means turn(60); {left turn}
R means turn(-60). {right turn}

What does the foll owing sequence of commands produce?
FLFLFLFRFLFLFLFRFLFLFLFR. (SeeChapter 9 for ageneralizaion o thisthat produces fradal )

3.5.4. Drawing Meanders. A meander’ isa pattern like that in Figure 3.38a, often made up d a continuows
line meandering along some path. One frequently sees meanders on Greek vases, Chinese plates, or floor tili ngs
from various courtries. The motif for the meander hereis shown in Figure 3.38b. After eady motif isdrawn the
turtle is turned (how much?) to prepare it for drawing the next motif.

"Based onthe name Maeander (which has modern name Menderes), awinding river in Turkey [Janson 8§.

Computer Graphics Chap 3 091/99 ‘38 PM page 27



a). b).EI

Figure 3.38. Example of a meander.

Write aroutine that draws this motif, and a routine that draws this meander. (Meanders are most attradive if the
graphics padkage & hand suppatsthe ontrol of line thickness-- as OpenGL does-- so that forward()  draws
thick lines.) A dazding variety of more complex meanders can be designed, as suggested in later exercises. A
meander is a particular type of friezepattern. Friezes are studied further in Chapter 2?72

3.5.5. Other Classs of Meanders. Figure 3.39 shows two additional types of meanders. Write routines that
employ turtle graphicsto draw them.

B i T
5265252

Figure 3.39. Additional figuresfor meanders.

3.5.6. Drawing Elaborate Meanders. Figure 3.40 shows a sequence of increasingly complex motifs for
meanders. Write routines that draw a meander for ead o these motifs. What does the “next most compli cated”
motif in this ssquencelook like, and what is the general principal behind constructing these motifs?

&1 5] &) ]

Figure 3.40. Hierarchy of meander motifs.

3.5.7. Implementing polyspiral. Write the routine polyspiral(float length, float angle,

float incr, int num ) that draws a palyspiral consisting d num segments, the first having length
length . After ead segment isdrawn length  isincremented byincr andthe turtle turns throughangle
angle .

3.5.8. Is a Polyspiral an IFS? Can apdyspiral be described in terms of an iterated function system as defined
in Chapter 2? Spedfy the function that isiterated bythe turtle at ead iteration.

3.5.9. Reaursive form for Polyspiral(). Rewrite polyspiral() in areaursive form, so that
polyspiral() with argument dist  cdls polyspiral() with argument dist+inc. Put a suitable
stoppng criterionin the routine.

3.6. Figures based on Regular Polygons.
To generalizeisto be anidiot.
Willi am Blake

“ Bees...by virtue of certain geometrical forethougti...know that the hexagonis greater thanthe square and
triande, andwill hold more horeyfor the same expenditure of material.”
Pappus of Alexandria

The regular paygors form alarge and important family of shapes, often encourtered in computer graphics. We

ned efficient waysto draw them. In this ssdionwe examine how to dothis, and hav to creae anumber of
figures that are variations of the regular polygon

3.6.1. The Regular Polygons.
First recdl the definition o aregular polygon

Computer Graphics Chap 3 091/99 ‘38 PM page 28



Definition: A paygonisregular if it is Smple, if al its $des have equal lengths, and if adjacent sides med at
equal interior angles.

Asdiscussd in Chapter 1, a paygonissimple if notwo dof its edges crossead ather (more predsely: only
adjacent edges can touch, and orly at their shared endpadnt). We give the name n-gon to aregular palygon
having n sides. Familiar examples are the 4-gon(a square), a 5-gon(aregular pentagon), 8-gon (aregular
octagon), and so on A 3-gonisan equil ateral triangle. Figure 3.41 shows various examples. If the number of
sides of an n-gonislarge the paygonapproximates a drcle in appeaance. In fad thisis used later as one way
to implement the drawing d a drcle.

n: 3 4 5 6 40

Figure 3.41. Examples of n-gors.

The vertices of an n-gonlieona drcle, the so-cdled “parent circle” of the n-gon andtheir locations are eaily

caculated. The cae of the hexagonis $iown in Figure 3.42 where the vertices lie eguispacel every 60° around
the drcle. The parent circle of radius R (not shown) is centered at the origin, and the first vertex P, has been
placeal onthe positive x-axis. The other vertices follow acwrdingly, as Pj = ( R cos(i »a), Rsin(i xa)), fori =
1,...5, where ais 2p/6 radians. Simil arly, the vertices of the general n-gonlie &:

y
Pz\ 4 /Plz(Rcos(a),Rsin(a))

/ a X
\R\
Po

Figure 3.42. Finding the vertices of an 6-gon

Pi=(Rcos(2pi/n), Rsin(2pi /n)), fori=0,...,n-1 (3.6)

It's easy to modify this n-gon To center it at position (cx, cy) we need only add cx and cy to the x- and y-
coordinates, respedively. To scdeit by facdor Swe need orly multiply R by S. To rotate throughangle A we
neal orly add A to the aguments of cos() and sin(). More general methods for performing geometricd
transformations are discussed in Chapter 6.

It is smple to implement aroutine that draws an n-gon, as s1own in Figure 3.43. The n-gonis drawn centered at
(cx, cy), with radiusradius , andisrotated throughrotAngle  degrees.

void ngon(int n, float cx, float cy, float radius, float rotAngle)
{ I/l assumes global Canvas object,cvs

if(n < 3) return; /I bad number of sides
double angle = rotAngle * 3.14159265 / 180; // initial angle
double angleinc =2 * 3.14159265 /n; /langle increment

cvs. moveTo(radius + cx, cy);
for(int k = 0; k < n; k++) // repeat n times
{
angle +=anglelnc;
cvs.lineTo(radius * cos(angle) + cx, radius * sin(angle) +cy);
}
}

Figure 3.43. Building an n-gonin memory.

Computer Graphics Chap 3 091/99 ‘38 PM page 29




Example 3.6.1: A Turtle-driven n-gon. It isalso smpleto draw an n-gon wsing turtlegraphics. Figure 3.44
shows how to draw aregular hexagon The initial positionand dredion d the turtle isindicated bythe small
triangle. The turtle simply goes forward six times, makinga CCW turn of 60 degrees between eac move:

360/n

L

Figure 3.44. Drawing a hexagon
for (1= 0;i<6; i++)

cvs.forward(L, 1);
cvs.turn(60);

}
One vertex is stuated at the initial CP, and bah CPand CDare left unchanged by the process Drawing the

general n-gon, and some variations of it, is discussed in the exercises.

3.6.2. Variations on n-gons.

Interesting variations based onthe vertices of an n-goncan also be drawn. The n-gon \ertices may be mnreded
in various waysto produce avariety of figures, as suggested in Figure 3.45. The standard n-gonisdrawn in
Figure 3.45a by conreding adjacent vertices, but Figure 3.45b shows a stellation (or star-like figure) formed by
conreding every other vertex. And Figure 3.45c shows the interesting r osette, formed by conreding ead
vertex to every other vertex. We discussthe rosette next. Other figures are described in the exercises.

a). b).

£

Figure 3.45. A 7-gonand its off spring. ). the 7-gon, b). a stellation, ¢). a “7-rosette”.

Example 3.6.2. The rosette, and the Golden 5-rosette.

Therosetteisan n-gonwith ead vertex joined to every other vertex. Figure 3.46 shows 5-, 11-, and 17
rosettes. A rosette is smetimes used as a test pattern for computer graphics devices. Its orderly shape readily
reveds any dstortions, and the resolution o the device can be determined by nding the anourt of “crowding’
and Hurring exhibited bythe bunde of linesthat med at ead vertex.

Figure 3.46. The 5-, 11-, and 17rosettes.

Computer Graphics Chap 3 091/99 ‘38 PM page 30



Rosettes are eay to draw: simply conred every vertex to every other. In pseudocode thislooks like

void Rosette( int N, float radius)

{
Point2 ptf  big enough value for largest rosette I;
generate the vertices pt[0],. . .,pt[N-1], as in Figure 3.43
for(inti=0;i<N-1;i++)
forintj=i+1;j<N;j++t)
{
cvs.moveTo(pt] i]); // connect all the vertices
cvs.lineTo(pt[j]);
}
}

The 5-rosette is particularly interesting becaise it embodes many instances of the golden ratio f (recdl Chapter
2). Figure 3.47a shows a 5-rosette, which is made up o an outer pentagonand an inner pentagram. The Greeks

saw amysticd significancein thisfigure. Its ssgments have an interesting relationship: Each segment isf times
longer than the next smaller one (seethe exercises). Also, because the alges of the star pentagram form an inner
entagon an infinite regresson d pentagramsis possble, as siownin Figure 3.47h.

a). b).

£2

f

Figure 3.47. 5-rosette and Infinite regressons - pentagons and pentagrams.

Example 3.6.3. Figures based on two concentric n-gons.

Figures 3.48 shows ome shapes built upontwo concentric parent circles, the outer of radius R, and the inner of
radius fR for some fradionf. Each figure uses avariation d an n-gonwhaose radius alternates between the inner
and ouer radii. Parts @) and b) show familiar company logos based on 6gons and 1Ggors. Part ¢) isbased on
the 14-gon, and part d) showsthe inner circle explicitly.

a). b) c) d).

/

radius R radius f R

Figure 3.48. A family of Famous Logcs.

Practice Exercises.

3.6.1. Stellations and rosettes. The pentagram is drawn by conreding “every other” point as one traverses
arounda 5-gon Extend thisto an arbitrary oddvalued n-gonand develop aroutine that draws this so-cdled
“stellated” polygon Can it be dorewith asingleinitial moveTo() followed orly bylineTo() ’s(thatis,
withou “lifting the pen”)? What happensif niseven?

3.6.2. How Many Edgesin an N-rosette? Show that a rosette based onan N-gon, an N-rosette, hasN(N - 1) / 2
edges. Thisisthe same a the number of “clinks’ one heaswhen N people ae seaed aroundatable and
everybody clinks glasses with everyone dse.

Computer Graphics Chap 3 091/99 ‘38 PM page 31




3.6.3. Prime Rosettes. If arosette has a prime number N of sides, it can be drawn withou “lifting the pen,” that
is, by using oy lineTo (). Start at vertex v, and draw to ead of the othersin turn: ViV, V3, .until v is
again readed and the paygonis drawn. Then goaroundagain drawing lines, but skip avertex each tlme that
is, increment the index by 2—thereby drawing to VoV, .o,V Thiswill require going aroundtwiceto arrive
bad at V. (A moduo operationis performed onthe indices 9 that their values remain between Oand N-1.)
Then reped this, incrementing by 3 VoV, VLV Each repea draws exadly N lines. Because there ae N(N
-1)/ 2linesinall, the processrepedas (N - 1) / 2 times. Because the number of verticesisa prime, no petternis
ever repeaed urtil the drawing is complete. Develop and test a routine that draws prime rosettes in this way.
3.6.4. Rosettes with an odd number of sides. If nisprime we know the n-rosette can be drawn asasingle
polyline withou “lifting the pen”. It can also be drawn as a single palyline for any odd value of n. Devise a
methodthat does this.

3.6.5. The Geometry of the Star Pentagram. Show that the length of ead segment in the 5-rosette standsin
the golden ratio to that of the next smaller one. One way to tadkle thisisto show that the triangles of the star
pentagram are “golden triangles’ with aninner angle of p/ 5 radians. Show that 2 * cos(p/5) =f and 2 *
cos(2p/ 5) =1/ f. Ancther approach uses only two families of similar triangles in the pentagram and the

relation 3 = 2f + 1 satisfied by f.

3.6.6. Erecting Triangles on n-gon legs. Write aroutine that draws figures like the logoin part a of Figure 3.48
for any value of f, positive or negative. What is a reasonable geometric interpretation o negative f?

3.6.7. Drawing the Star with Relative Moves and Draws. Write aroutine to draw a pentagram that uses only
relative moves and draws, centering the star at the CP.

3.6.8. Draw a pattern of stars. Write aroutine to draw the pattern of 21 stars iown in Figure 3.49. The small
stars are positioned at the vertices of an n-gon

ﬁ*ﬁ’

v **A** i
¥ )¢

P 4 F

* K
* *
¥

Figure 3.49. A star pattern.

3.6.9. New points on the “7-gram” . Figure 3.50 shows a figure formed from the 7 pdnts of a 7-gon, centered
at the origin. Thefirst paint liesat (R, 0). Instead of conreding conseautive points aroundthe 7-gon, two
intermediary paints are skipped. (Thisisaform of “stellation” of an n-gon) Findthe wordinates of point P,
where two o the edgesintersed.

A

P
v (R, 0)
N

Figure 3.50. A “7-gram”.

Computer Graphics Chap 3 091/99 ‘38 PM page 32



3.6.10. Turtle drawings of the n-gon. Write turtleNgon  (int numSides, float length) that uses
turtlegraphicsto draw an n-gonwith numSides sidesandaside of length length.

3.6.11. Polygons sharing an edge. Write aroutine that draws n-gori's, for n=3,..., 12, ona mmmon edge, as
in Figure 3.51.

Figure 3.51. N-gons sharing a mmmon edge.

3.6.12. A more eéaborate figure. Write aroutine that draws the shape in Figure 3.52 by dawing repeaed
hexagonrs rotated relative to ore ancther.

Figure 3.52. Repeaed use of turtle ommands.

3.6.13. Drawing afamouslogo. The esteamed logoshown in Figure 3.53 consists of threeinstances of a motif,
rotated a cetain amourt with resped to ead ather. Show aroutine that draws this $ape using turtlegraphics.

9

Figure 3.53. Logo d the University of Massachusetts.

3.6.14. Rotating Pentagans: animation. Figure 3.54 shows a pentagram oriented with some angle of rotation
within a pentagon, with correspondng ertices joined together. Write aprogram that “animates’ thisfigure. The
corfigurationis drawn using some initial angle A of rotation for the pentagram. After a short pause it is erased
and then redrawn bu with a dlightly larger angle A. This processrepeds until akey is pressed.

Figure 3.54. Rotating penta-things.

Computer Graphics Chap 3 091/99 ‘38 PM page 33



3.7. Drawing Circles and Arcs.

Drawing a drcleisequivalent to drawing an n-gonthat has a large number of vertices. The n-gonresembles a
circle (unlessit is rutinized too closely). The routine drawCircle () shown in Figure 3.55 daws a 50-sided
n-gon by simply passngits parameters onto ngon (). It would be more dficient to write drawCircle () from
scratch, basing it on the code of Figure 3.43,

void drawCircle(Point2 center, float radius)

{

const int numVerts = 50; // use larger for a better circle
ngon( numVerts, center.getX(), center.getY(), radius, 0);

Figure 3.55. Drawing a drcle based onan 50-gon

3.7.1. Drawing Arcs.

Many figuresin art, architedure, and scienceinvolve acs of circlesplacel in peasing a significant
arrangements. An arc is conveniently described by the position d the center, c,andradius, R, of its“parent”
circle, alongwith its beginning angle a and the angle b throughwhich it “sweeps’. Figure 3.56 shows such an
arc. We asume that if b is positive the ac sweepsin a CCW diredionfrom a. If bisnegativeit swegysina
CW fashion. A circleisaspedal case of an arc, with a sweep of 360.

Ay
N\

. b
ﬁZﬁ\.a_

¥

Figure 3.56. Defining an arc.

We want aroutine, drawArc (), that draws an arc of a drcle. The function shown in Figure 3.57 approximates
the ac by part of an n-gon, using moveTo( ) and lineTo(). Successve points alongthe ac ae found by
computing a cos() and sin() term ead time throughthe main loop. If sweep is negative the angle automaticdly
decaeases eadh time through

void drawArc(Point2 center, float radius, floatstartAngle, float sweep)
{ /I startAngle and sweep are in degrees

const int n = 30; // number of intermediate segments in arc

float angle = startAngle * 3.14159265 / 180; // initial angle in radians

float anglelnc = sweep * 3.14159265 /(180 * n); // angle increment

float cx = center.getX(), cy = center.getY();

cvs.moveTo(cx + radius * cos(angle), cy + radius * sin(angle));

for( intk = 1; k < n; k++, angle +=anglelnc)

cvs.lineTo(cx + radius * cos(angle), cy + radius * sin(angle));

}

Figure 3.57. Drawing an arc of a drcle.

The CPisleft at thelast point onthe ac. (In some caes one may wish to omit the initial moveTo() tothefirst
point onthe ac, so that the ac is conneded to whatever shape was being dawn when drawArc() iscdled.)

A much faster arc drawing routine is developed in Chapter 5 that avoids the repetitive cdculation d so many
sin() and cos() functions. It may be used fredy in paceof the procedure here.

With drawArc () in handit isasimple matter to buld the routine drawCircle(Point2 center,
float radius) that draws an entire drcle (how?).

Computer Graphics Chap 3 091/99 ‘38 PM page 34




Theroutine drawCircle () iscdled byspedfyinga center andradius, but there ae other waysto describe a
circle, which have important applicaionsin interadive graphics and computer-aided design. Two familiar ones
are;

1). The center isgiven, along with a point on the drcle. HeredrawCircle () can be used as onasthe
radiusis known. If cisthe center and p isthe given pant onthe drcle, the radiusis smply the distancefrom ¢
to p, found wing the usual Pythagorean Theorem.

2). Three points are given through which the drcle must pass It is known that a unique drcle passes through
any threepaointsthat dornit liein astraight line. Finding the center and radius of thiscircleisdiscussedin
Chapter 4.

Example 3.7.1. Blending Arcstogether. More complex shapes can be obtained by wsing perts of two circles
that are tangent to ore ancther. Figure 3.58ill ustrates the underlying principle. The two circles are tangent at
point A, where they share tangent line L. Because of thisthe two arcs shown bythe thick curve “blend’ together
seamlesdy at A with no visible bre& or corner. Similarly the ac of a drcle blends snoacthly with any tangent
line, asat point B.

L

Figure 3.58. Blending arcs using tangent circles.

Practice Exercises.

3.7.1. Circle Figuresin Philosophy. In Chinese phil osophyand religion the two principles of yin and yang
interact to influence dl creaures destinies. Figure 3.59 shows the exquisite yin—yang symbal. The dark partion,
yin, represents the feminine asped, and the light portion, yang, represents the masculi ne. Describe in detail the
geometry of this ymbadl, suppaingit is centered in some cordinate system.

use figure 4.3 from 1st edition

Figure 3.59. The yin-yang symbal.

3.7.2. The Seven Pennies. Describe the mnfiguration shown in Figure 3.60in which six penniesfit snugy
arounda center penny. Use symmetry arguments to explain why the fit is exad; that is, why ead o the outer
pennies exactly touches itsthreeneighbas.

Computer Graphics Chap 3 091/99 ‘38 PM page 35



Figure 3.60. The seven circles.

3.7.3. A famousloga. Figure 3.61 shows a well-known automobil e logo. It isformed by ereding triangles
inside an equil ateral triangle, but the outer triangle isreplaceal by two concentric drcles. After determining the
“proper” positions for the threeinner points, write aroutine to draw thisloga

Figure 3.61. A famousloga

3.7.4. Drawing clocks and such. Circles and lines may be made tangent in a variety of waysto crede pleasing
smoath curves, asin Figure 3.62a. Figure 3.62b shows the underlying lines and circles. Write aroutine that

draws thisbasic dock shape

a). b).
N

Figure 3.62. Blending arcsto form smoath curves.

3.7.5. Drawing rounded rectangles. Figure 3.63 shows an aligned redangle with rounded corners. The
redangle has width W and asped ratio R, and ead corner is described by a quarter-circle of radiusr = g W for
some fradion g. Write aroutine drawRoundRect (float W, float R, float g) that draws this
redangle centered at the CP. The CPshoud be left at the canter when the routine exits.

r
O
W

Figure 3.63. A rounded recangle.

RW

3.7.6. Shapesinvolving arcs. Figure 3.64 shows two interesting shapes that involve drclesor arcs. Oneis
similar to the Atomic Energy Commisson symbal (How doesit differ form the standard symba?). Write and
test two routines that draw these figures.

caution radiation

Figure 3.64. Shapes based onarcs.

Computer Graphics Chap 3 091/99 ‘38 PM page 36



3.7.7. A tear drop. A “tea drop’ shape that isused in many ornamental figuresis $rown in Figure 3.65a. As
showvn in part b) it consists of a drcle of given radius R snugded down into an angle f. What are the
coardinates of the drcle’'s center C for agiven Randf ? What are the initial angle of the ac, andits sveep?
Develop aroutine to draw atea drop at any pasition andin any orientation.

3

a). b) A
C~R
f
X
—Y __»

Figure 3.65. The tea drop and its construction.

3.7.8. Drawing Patterns of Tear Drops. Figure 3.66 show some uses of the tea drop. Write aroutine that
draws ead o them.

Figure 3.66. Some figures based onthe tea drop.

3.7.9. Pie Charts. A sedor isclosely related to an arc: ead end d the ac is conreded to the canter of the
circle. The familiar pie dhart isformed by dawing a number of sedors. A typicd exampleis shownin Figure
3.67. Pie charts are used to ill ustrate how awhale is divided into parts, aswhen apieis $lit up and dstributed.
The eye quickly grasps how big ead “dice” isrelative to the others. Often ore or more of the dicesis
“exploded” away from the padk aswell, as shown in the figure. Secorsthat are exploded are simply shifted
dightly away from the center of the pie dchart in the proper direction

Figure 3.67. A pie dhart.

To draw a pie chart we must know the relative sizes of the dices. Write and test a routine that accepts data from
the user and drawsthe mrrespondng pie chart. The user entersthe fracion o the pie eab dicerepresents,
alongwith an ‘€ if the diceisto be drawn exploded, or an ‘n’ otherwise.

3.8. Using the Parametric form for a curve.

There ae two principal waysto describe the shape of a aurved line: implicitly and parametricdly. The
implicit form describes a aurve by afunction F(x, y) that provides arelationship between the x andy
coadinates: the paint (x, y) liesonthe airveif and orly if it satisfies:

F(x,y)=0 condtionfor (x, y) tolieonthe arve (3.7

Computer Graphics Chap 3 091/99 ‘38 PM page 37



For example, the straight line through pants A and B has implicit form:

F(xy)=(y-A)B-A) - x-A)B,-A) (3.8)
and the drcle with radius R centered at the origin hasimplicit form:

Fixy)=xX+y-R (3.9)

A benefit of using the implicit form is that you can easily test whether a given padnt liesonthe airve:
simply evaluate F(x, y) at the point in question. For certain classes of curvesit is meaningful to speak of
an inside and an ouside of the aurve, in which case F(x, y) isaso cdled the inside-outside function,
with the understanding that

F(x,y)=0 for al (x, y) onthe arve
F(x,y)>0 for al (x, y) outside the arve (3.10)
F(x,y) <0 for al (x, y) insde the aurve

(IsF(x, y) of Equetion 39 alegitimate inside-outside function for the drcle?)

Some aurves are single-valued in x, in which case there isafunction g(.) such that al points onthe arve
satisfy y = g(x). For such curves the implicit form may be written F(x, y) =y - g(x). (What isg(.) for the
line of Equation 387?) Other curves are single-valued iny, (so there isafunction h(.) such that pointson
the aurve satisfy x = h(y). And some aurves are nat singe-valued at al: F(x, y) = 0 cannd be rearanged
into either of the formsy = g(x) nor x = h(y). The drcle, for instance, can be expressed as.

y=+JR*- x* (3.12)

but here there ae two functions, not one.

3.8.1. Parametric Forms for Curves.

A parametric form for a arve produces different points on the aurve based onthe value of a parameter.
Parametric forms can be developed for awide variety of curves, and they have much to recommend
them, particularly when ore wantsto draw or analyzethe airve. A parametric form suggests the
movement of a paint throughtime, which we can trandate into the motion o a pen asit swees out the
curve. The path o the particle traveling alongthe arve isfixed bytwo functions, x() andy( ), and we
spedk of (x(t), y(t)) asthe position of the particle & timet. The airveitself isthe totality of points
“visted” by the particle &t varies over some interval. For any curve, therefore, if we can dream up
suitable functions x( ) and y( ) they will represent the aurve mncisely and predsely.

The familiar Etch-a-Sketch8 shown in Figure 3.68 provides a vivid analogy. As knobs are turned, a stylus
hidden in the box scrapes athin visible line agossthe screen. One knob controls the horizontal pasition,
and the other direds the verticd paosition d the stylus. If the knobs are turned in accordance with x(t) and
y(t), the parametric aurveis svept out. (Complex curves require substantial manual dexterity.)

1I'st Ed. Figure7.11

Figure 3.68. Etch-a-Sketch drawings of parametric curves. (Drawing by Suzanne Casiell0.)

Examples: Theline and the dli pse.
The straight line of Equation 38 passesthrough pants A and B. We choose aparametric form that visits
Aatt=0andBatt=1, ohtaining:

x(t)=A+ (B, - At (312
y() =A + (B, - A)t

8Etch-a-Sketch is a trademark of Ohio Art.

Computer Graphics Chap 3 091/99 ‘38 PM page 38



Thusthe paint P(t) = (x(t), y(t)) “sweeps through' all of the paints onthe line between A and B ast varies
from 0 to 1 (ched thisout).

Ancther classc exampleisthe elli pse, adight generalization o the drcle. It isdescribed parametricaly
by

X(t) = W cos(t) (3.13
y(t) =H sin(t) ,forO £t £ 2p.

Here Wisthe “half-width”, and H the “half-height” of the dli pse. Some of the geometric properties of
the dlipse ae explored in the exercises. When W and H are equal the dlipseisa drcle of radius W.
Figure 3.69 shows this €lli pse, alongwith the componrent functions x(.) and y(.).

@t=p/2 Ay $v0
_ (X, y®) i
@t=p K
AN T o YW 25 ¢
K) ' \/
@t = P2 Hr

w

N

A
Figure 3.69. An elli pse described parametricdly.

Ast variesfrom 0 to 2p the paint P(t) = (x(t), y(t)) moves once aoundthe dli pse starting (and finishing)
at (W, 0). The figure shows where the point islocated at various “times’ t. It isuseful to visualize
drawing the dli pse on an Etch-a-Sketch. The knobs are turned badk and forth in an unddating pettern,
one mimicking W cos(t) and the other H sin(t). (Thisis aurprisingly difficult to domanually.)

 Finding an implicit form from a parametric form - “implicitization”.

Suppase we want to chedk that the parametric form in Equation 313 truly represents an elli pse. How
do we find the impli cit form from the parametric form? The basic step is to combine the two
equations for x(t) and y(t) to somehow eliminate the variable t. This provides a relationship that must
hold for all t. It isn't always easy to seehow to dothis— there ae no simple guideli nes that apply
for al parametric forms. For the dli pse, however, square both x/W and y/H and wse the well -known

faa cos(t)2 + sin(t)2 = 1 to oltain the familiar equation for an elli pse:

2 2
®XG YO _
swo Fene (3.14)

The foll owing exercises explore properties of the dli pse and aher “clasdgcad curves’. They develop
useful fads abou the conic sedions, which will be used later. Read them over, even if you dorit stop to
solve eat ore.

| Practice Exercises

Computer Graphics Chap 3 091/99 ‘38 PM page 39



3.8.1. On the geometry of the Elli pse. An éllipseisthe set of al points for which the sum of the
distances to two foci is constant. The paint (¢, 0) shown in Figure 3.69 forms one “focus’, and (-c, 0)

forms the other. Show that H, W, and c are related by:. W2 = H2 + 2.
3.8.2. How ecceantric. The eccentricity, e = c/ W, of an elli pse is ameasure of how noncircular the
élipseis, being Ofor atrue drcle. Asinteresting examples, the planetsin ou solar system have very
nealy circular orbits, with e ranging from 1/143(Venus) to 1/4 (Pluto). Earth’s orbit exhibits e = 1/60.
Asthe eccaetricity of an elli pse gproaches 1, the dli pse flattensinto a straight line. But e hasto get very
close to 1 kefore this happens. What istheratio H / W of height to width for an elli pse that has e = 0.99?
3.8..3. The other Conic Sedions.
The dli pseis one of the three @nic sedions, which are aurves formed by cutting (“sedioning’) a drcular
cone with aplane, as shown in Figure 3.70. The onic sedions are:

elli pse: if the plane auts one “nappe” of the mne;

hyperbala: if the plane auts both nappes

parabdla: if the planeis parall € to the side of the cone;

Figure 3.70. The dasscd conic sedions.

The parabola and hyperbola have interesting and useful geometric properties. Both of them have simple
implicit and parametric representations.

Show that the foll owing parametric representations are consistent with the impli cit forms given:

* Parabola: Impli cit form:y2—4ax=0
x(t) = at? (3.15)
yt)=2at

* Hyperbola: Implicit form: (x/a)2 - (y/b)2 =1
X(t)=a sedt) (3.16)

y(t)=b tan(t)

What range in the parameter t is used to swee ou this hyperbola?Note: A hyperbadais defined asthe
locus of al points for which the differencein its distances from two fixed foci isa constant. If the foci

here ae & (-c, 0) and (+c, 0), show that a and b must be related byc2 = a2 +p2.

3.8.2. Drawing curves represented parametrically.

It is graightforward to draw a aurve when its parametric representationis available. Thisisamajor
advantage of the parametric form over the implicit form. Suppcse a arve C has the parametric
representation P(t) = (x(t), y(t)) ast variesfrom 0 to T (seeFigure 3.714). We want to draw a good
approximationto it, using orly straight lines. Just take samples of P(t) at closely spacel “instants’. A
sequence{tj} of timesare chosen, andfor ead tj the position P,= P(t) = (X(tj), y(tj)) of the arveis
found The arve P(t) isthen approximated by the palyline based onthis squence of paints Pj, as s1own
inFigure 3.71h

_ Pm
a). @1=T- b).

/

\ P(t) = (x(1), y(1))
@t=0 P1
Figure 3.71. Approximating a aurve by a palyline.

P2

Figure 3.72 shows a ade fragment that draws the aurve (x(t), y(t)) when the desired array of sample
timest[i] isavailable.

Computer Graphics Chap 3 091/99 ‘38 PM page 40



/I draw the curve (x(t), y(t)) using
Il the array t[0],..,t[n-1] of “sample-times”

glBegin(GL_LINES);
for(" inti=0;i<n;i++)
glVertex2f((x([ i), y(tiD);
glEnd();

Figure 3.72. Drawing the dli pse using pants equispaced in t.

If the samples are spacal sufficiently close together, the eye will naturally blend together the line
segments and will see asmoath curve. Samples must be dosely spaced in t-intervals where the airveis
“wigdling’ rapidly, but may be placal lessdensely where the aurve is unduating slowly. The required
“closeness’ or “quality” of the goproximation depends on the situation.

Code can dften be simplified if it isneeded orly for a spedfic curve. The dlipsein Equation 313 can be
drawn using n equispaced values of t with:

#define TWOPI 2 * 3.14159265
glBegin(GL_LINES);
for(double t = 0; t <= TWOPI; t += TWOPI/n)
glVertex2f(W * cos(t), H * sin(t));
glEnd();

For drawing puposes, parametric forms circumvent all of the difficulties of implicit and explicit forms.
Curves can be multi-valued, and they can self-intersed any number of times. Verticdity presents no
spedal problem: x(t) smply beames constant over some interval int. Later we seethat drawing curves
that liein 3D spaceisjust as graightforward: threefunctions of t are used, and the point at t onthe airve

is (x(1), y(), (1)).

Practice Exercises.

3.8.4. An Example Curve. Compute and dot by hand the paints that would be drawn by the fragment
abovefor W=2,H =1, at the 5 valuesof t = 2pi/9, fori =0, 1, ... 4.

3.8.5. Drawing alogo A well-known logo consists of concentric drcles and elli pses, as own in Figure
3.73. Suppce you have adrawingtod: drawEllipse (W, H, color) that draws the dli pse of
Equation 313fill ed with color color.  (Assume that as ead color isdrawn it completely obscures any
previoudy drawn color.) Choose suitable dimensions for the dli psesin the logoand gve the sequence of
commands required to draw it.

Figure 3.73. A familiar “eye” made of circles and elli pses.

Some spedfic examples of curves used in computer graphics will help to cement the ideas.

3.8.3. Superellipses
An excdlent variation d the dli pse isthe superelli pse, afamily of elli pse-like shapes that can produce
goodeffedsin many drawing situations. The implicit formula for the superelli pseis

n n

X y
=+ L =1 31
W H (.17

Computer Graphics Chap 3 091/99 ‘38 PM page 41




where n is a parameter cdled the bulge. Looking at the mrrespondng formulafor the dli psein Equation
3.14, the superelli pse is e to become an elli pse when n = 2. The superelli pse has the foll owing
parametric representation:

x(t) = W cos(t)|cos(t)”"|
(3.18)
y(t) = H sin(t)lsin(t)”™’|

for0 £t £ 2p. The exporent onthe sin() and cos() isredly 2/n, but the peauliar form as $own is used
to avoid trying to raise anegative number to afradional power. A more predse version avoids this.
Chedk that this form reduces nicdy to the equation for the dli pse when n = 2. Also ched that the
parametric form for the superelli pse is consistent with the impili cit equation.

Figure 3.74a shows afamily of supercircles, spedal cases of superelli pses for which W= H. Figure
3.74bshows a scene mmposed entirely of superelli pses, suggesting the range of shapes possble.

1* Ed. Figures 4.16 and 417 together

Figure 3.74. Family of supercircles. b). Scene composed of superelli pses.

For n >1thebulgeisoutward, whereasfor n< 1it isinward. Whenn =1, it becomesasguare. (In
Chapter 6 we shall ook at threedimensional “superquadrics,” surfaces that are sometimes used in CAD
systems to model solid oljeds.)

Superelli pses were first studied in 1818 bythe French physicist Gabriel Lamé. More recently in 1959 the
extraordinary inventor Piet Hein (best known as the originator of the Soma aube and the game Hex) was
approached with the problem of designing atraffic drcle in Stockham. It had to fit inside aredangle
(with W/ H = 6/ 5) determined by dher roads, and hed to permit smocth traffic flow aswell as be
pleasingto the eye. An €lli pse proved to be too panted at the ends for the best traffic patterns, and so
Piet Hein souglht afatter curve with straighter sides and dreamed upthe superelli pse. He chasen=2.5as
the most pleasing buge. Stockham quickly accepted the superelli pse motif for its new center. The arves
were “strangely satisfying, neither too rounded na too athogoral, a happy dend o ellipticd and
redanguar beauty” [Gardner75, p. 243. Sincethat time, superelli pse shapes have gpeaed in furniture,
textil e patterns, and even sil verware. More can be found ot abou them in the references, espedally in
[Gardner75] and [Hill 794.

The superhyperbola can also be defined [Barr81]. Just replacecas(t) by seqt), and sin(t) by tan(y), in
Equation 318 When n= 2, the familiar hyperbalais obtained. Figure 3.75 shows example
superhyperbolas. Asthe bulge n increases beyond 2 the arve bulges out more and more, and as it
deaeases below 2, it bulges out lessand less beaming straight for n = 1 and gnchinginward for n < 1.
| 1st Ed. Figure 9.14.

Figure 3.75. The superhyperbola family.

3.8.4. Polar Coordinate Shapes

Polar coordinates may be used to represent many interesting curves. As sown in Figure 3.76, ead pant
onthe arveisrepresented byan ange q andaradia distancer. If r and q are eath made afunction o t,
then ast variesthe aurve (r(t), q(t)) is svept out. Of course this curve dso hasthe Cartesian
representation (x(t), y(t)) where:

Computer Graphics Chap 3 091/99 ‘38 PM page 42



Figure 3.76. Polar coordinates.

x(t) = r(t) cos(q(t)) (3.19
y(®) = r(t) sin(q(t)).

But asimplificaionispossble for alarge number of appeding curves. In these instancesthe radiusr is
expresed dredly asafunction d g, and the parameter that “ sweeps’ out the aurveis q itself. For ead
point (r, q) the crrespondng Cartesian pdnt (x, y) isgiven by

x = f(q) xcos(q) (3.20)
y =f(q) xsin(q)

Curves given in pdar coordinates can be generated and drawn as easily as any ahers: The parameter isq,
which is made to vary over an interval appropriate to the shape. The simplest exampleisa drcle with
radius K: f(g) = K. The form f(q) = 2K cos(q) is ancther smple aurve (which ore?). Figure 3.77 shows
same shapes that have simple expressonsin pdar coordinates:

1° Ed. Figue4.19 |

Figure 3.77. Examples of curves with simple polar forms..
* Cardioid: f(g9) = K (1 + cos(q)).

* Rose curves:  f(q) = K cos(n q), where n spedfies the number of petalsin the rose. Two cases are
shown.

* Archimedian spiral: f(q) = Kxg.

In ead case, constant K givesthe overall size of the aurve. Because the cardioid is periodic, it can be
drawn by verying g from 0 to 2p. The rose aurves are periodic when n is an integer, and the Archimedian
spiral keeps growing forever as q increases from 0. The shape of this giral has foundwide use & a can
to conwvert rotary motionto linea motion (see[Y ates46] and [Seggern9Q.

The conic sedions (elli pse, parabola, and hyperbala) all share the following pdar form:

) s —— (32
V=12 excos(q) '

where eisthe eccaetricity of the conic sedion. For e = 1 the shapeisaparabda; for O£ e<litisan
elli pse; andfor e> 1it isahyperbola.

* The Logaithmic Spiral

The logarithmic spiral (or “equianguar spiral”) f(q) = Ke2d, shown in Figure 3.78a, isalso of particular
interest [Coxeter61]. This curve auts all radial lines at a cmnstant angle a, where a = cot(a). Thisisthe
only spiral that has the same shape for any change of scde: Enlarge aphao of such a spiral any amourt,
and the enlarged

Computer Graphics Chap 3 091/99 ‘38 PM page 43



1* Ed Figures4.20and 421

Figure 3.78. The logarithmic spiral and b). chambered nautil us

spral will fit (after arotation) exadly ontop d the original. Similarly, rotate apicture of an equianguar
spiral, and it will seem to grow larger or smaller [Steinhaus69]°. This preservation o shape seemsto be
used by some animals guch asthe mollusk inside a diambered nautil us (seeFigure 3.78b). Asthe animal
grows, its shell also grows alonga logarithmic spiral in order to provide ahome of constant shape
[Gardner61].

Other families of curves are discussed in the exercises and Case Studies, and an exhaustive listing and
charaderizaion d interesting curvesis given in [yates46, seggern90, shikin95.

3.8.5. 3D Curves.

Curves that meander through P spacemay also be represented parametricdly, and will be discussed
fully in later chapters. To creae aparametric form for a 3D curve we invent threefunctions x(.), y(.), and
Z(.), and say the arveis“at” P(t) = (x(t), y(t), z(t)) at timet.

Some examples are:
The helix: The drcular helix isgiven parametricdly by:

X(t) = cos(t)
y(t)=sin(t) (3.22
Z(t) = bt

for some aonstant b. It ill ustrated in Figure 3.79 as a stereo pair. Seethe Prefacefor viewing stereo pairs.
If you find this unwieldy, just focus on ore of the figures.

Figure 3.79. The helix, displayed as a stereo pair.

Many variations onthe drcular helix are passhle, such asthe dlipticd helix P(t) = (W cos(t), H sin(t),
bt), andthe cnicd helix P(t) = (t cos(t), tsin(t), bt) (sketch these). Any 2D curve (x(t), y(t)) can of
course be mnverted to a helix by appending z(t) = bt, or some other form for z(t).

Thetoroidal spiral. A toroidal spiral, given by
X(t) = (asin(ct) + b) cos(t)

y(t) = (a sin(ct) + b) sin(t) (3.23)
Z(t) = a cos(ct)

9This curve was first described by Descartesin 1638 Jacob Bernouli (1654--1705
was 9 taken byit that histombstone in Basel, Switzerland, was engraved with it, alongwith the
inscription Eadem muata resurgo: “Thoughchanged | shall arise the same.”

Computer Graphics Chap 3 091/99 ‘38 PM page 44



isformed bywinding a string abou atorus (doughnt). Figure 3.80 shawsthe cae ¢ = 10, so the string
makes 10 loops aroundthe torus. We examine tubes based onthis spiral in Chapter 6.

Figure 3.80. A toroidal spiral, displayed as a stereo pair.

Practice Exercises

3.8.6. Drawing superelli pses. Write aroutine drawSuperEllipse (...)  that draws a superellipse. It
takes as parameters c, the center of the superelli pse, size parameters W and H, the bulge n, and m, the
number of “samples’ of the aurve to use in fashioning the palyline gproximation.

3.8.7. Drawing polar forms. Write routinesto draw an n-petaled rose and an equianguar spiral.

3.8.8. Golden Cuts. Find the spedfic logarithmic spiral that makes “galden cuts’ throughthe
intersedions of the infinite regresson o golden rectangles, as srown in Figure 3.81 (also recdl Chapter
2). How would a picture like this be drawn algorithmicadly?

1° Ed. Figure 4.22 |

Figure 3.81 The spiral and the golden recangle.

3.8.9. A useful implicit form function. Define asuitable implicit form for the rose arve defined ealier
in pdar coordinate form: f(q) = K cos(n q).

3.8.10. Insde-outside functions for polar curves. Discusswhether there is a single methodthat will
yield a suitable inside-outside function for any curve given in pdar coordinate form asin Equation 320.
Give examples or courter-examples.

3.9. Summary of the Chapter.

In this chapter we developed several todls that make it possble for the gpli cations programmer to “think” and
work diredly in the most convenient “world” coordinate system for the problem at hand. Objeds are defined
(“modeled”) using High predsionred coordinates, withou concern for “where” or “how big” the picture of the
objea will be onthe screen. These cncerns are deferred to alater seledion d awindow and a viewport —
either manually or automaticdly —that define bath hav much of the objed isto be drawn, and hav it isto
appea onthe display. This approach separates the modeling stage from the viewing stage, allowing the
programmer or user to focus at ead phase onthe relevant issues, undstraded by cetail s of the display device

The use of windows makesit very easy to “zoom” in or out onascene, or “roam” aroundto dfferent parts of a
scene. Such adions are familiar from everyday life with cameras. The use of viewports all ows the programmer
to placepictures or coll edions of pictures at the desired spots onthe display in order to compose the final
picture. We described techniques for insuring that the window and viewport have the same asped ratio, in order
to prevent distortion.

Clippingisafundamental technique in graphics, and we developed a dasscd agorithm for clipping line
segments against the world window. This all ows the programmer to designate which pation d the picture will
adually be rendered: parts outside the window are dipped df. OpenGL automaticdly performs this clipping,
but in ather environments a dipper must be incorporated explicitly.

We developed the Canvas classto encgpsulate many uncerlying cetail s, and provide the programmer with a
single uniform tod for fashioning dawing programs. This classhides the OpenGL detail sin convenient

Computer Graphics Chap 3 091/99 ‘38 PM page 45



routines such as setWindow (), setViewport (), moveTo(), lineTo (), andforward (), andinsuresthat al
proper initializations are caried ou. In a Case Study we implement Canvas for a more basic non-OpenGL
environment, where explicit cli pping and window-to-viewport mapping routines are required. Here the value of
data-hiding within the dassis even more gparent.

A number of additional tods were developed for performing relative drawing and turtle graphics, and for
creaing dawings that include regular palygonrs, arcs and circles. The parametric form for a aurve was
introduced, and shown to be avery natural description o a arve. It makesit smpleto draw a arve, even those
that are multi-valued, crossover themselves, or have regions where the aurve moves verticdly.

3.10. Case Studies.

One of the symptoms of an appoaching
nervous breakdown is the beli ef that
one'swork isterribly importarnt.
Bertrand Rus=l|

3.10.1. Case Study 3.1. Studying the Logistic Map and Simulation of

Chaos.

(Level of Effort: Il) Iterated function systems (IFSs) were discussed at the end d Chapter 2. Anather IFS
provides a fascinating look into the world of chaos (see[Gleick87, Hofs85]), and requires proper setting d a
window and viewport. A sequence of valuesis generated by the repeaed applicaion o afunctionf(.), cdled
the logistic map. It describes a parabola:

f(X)= 41X (L- X) (3.24)

where | is ©me hosen constant between 0and 1 Beginning at a given starting pant, X, between Oand 1,
functionf(.) isapplied iteratively to generate the orbit (recdl its definitionin Chapter 2):

_ f[k]
X = (xo)

How does this sequence behave?A world of complexity lurks here. The adion can be made most vivid by
displayingit graphicdly in a cetain fashion, aswe now describe. Figure 3.82 shows the parabday =41 x (1 -
X) forl =0.7 asx variesfrom0to 1

1srt Ed. Figure 3.28

Figure 3.82. The logistic map for / = 0.7.

The starting pant X = 0.1ischosen here, and at x = 0.1 averticd lineisdrawn upto the parabola, showing the
value f(x) 0.252 Next we must apply the function to the new vaIuex =0.252 Thisis shown visually by
moving hcnzontally over totheliney = x, asill ustrated in the figure. Then to evaluate f( ) at thisnew value a
lineisagain drawn up \erticdly to the parabola. This processrepeasforever asin aher IFSs. From the
previous position (xk_l, xk) ahorizontal lineisdrawn to (xk, xk) from which a verticd lineis drawn to (xk, xm).
Thefigure showsthat for / = 0.7, the values quickly converge to a stable “atracor,” a fixed pdnt so that f(x) =
X. (What isitsvalue for / =0.7?) This attracor does nat depend onthe starting pant; the sequence dways
converges quickly to afinal value.

If | is %t to small values, the adionwill be even simpler: Thereisasinge dtrador at x = 0. But when the “/ -
knobd’ isincreased, something strange begins to happen. Figure 3.83a shows what resultswhen / = 0.85. The
“orhit” that represents the sequencefall sinto an end essrepetitive gscle, never settling davn to afinal value.
There ae several attradors here, one & ead verticd linein the limit cycle shown in the figure. Andwhen | is
increased beyondthe aiticd value /| = 0.892486418..the processbecomes truly chaotic.

1* Ed. Figure 3.29

Computer Graphics Chap 3 091/99 ‘38 PM page 46



Figure 3.83. The logistic map for @). / =0.85and b. / =0.9.

The caeof I =0.9is srown in Figure 3.83h. For most starting pantsthe orbit is gill periodic, but the number
of orbits observed between the repeds is extremely large. Other starting pantsyield truly aperiodic motion, and
very small changesin the starting pant can lead to very diff erent behavior. Before the truly remarkable
charadter of this phenomenonwas first recogrized by Mitchell Feigenbaum in 1975 most researchers beli eved
that very small adjustmentsto a system shoud produce @rrespondngly small changesin its behavior and that
simple systems such asthis could na exhibit arbitrarily complicaed behavior. Feigenbaum's work spawned a
new field of inqury into the nature of complex norinea systems, known as chaos theory [Gleick87]. It is
intriguing to experiment with thislogistic map.

Write and exercise aprogram that permits the user to study the behavior of repeaed iterations of the logistic
map, as hhown in Figure 3.83. Set up a suitable window and viewport so that the entire logistic map can be
clealy seen. The user gives the values of X and/ and the program draws the limit cycles produced by the

system.

3.10.2. Case Study 3.2. Implementation of the Cohen Sutherland Clipper in

C/C++.

(Level of Effort: Il) The basic flow of the Cohen Sutherland algorithm was described in Sedion 33.2. Here we
flesh ou some detail s of itsimplementationin C or C++, exploiting for efficiency the low-level bit
manipulations these languages provide.

Wefirst need to form the “inside-outside” code words that report how a point P is positioned relative to the
window (seeFigure 3.20). A single 8-bit word code suffices. four of its bits are used to cgpture the four pieces
of information. Point P istested against ead window boundiry in turn; if it li es outside this boundary, the
proper bit of code is st to 1to represent TRUE. Figure 3.84 shows how this can be dore. code isinitialized
to 0, andthenitsindividual bits are set as appropriate using a bit-wise OR operation. The values 8, 4, 2, and 1
are simple masks. For instance, since 8 in binary is 00001000 bit-wise OR-ing a value with 8 sets the fourth hit
from theright endto 1

unsigned char code = 0; // initially all bits are 0
if(P.x < window.l) code |= 8; /I set bit 3
if(P.y > window.t) code |=4; /I set bit 2
if(P.x > window.r) code |= 2; /I set bit 1
if(P.y <window.b) code |=1; /Il set bit 0

Figure 3.84. Setting hitsin the “inside-outside code word” for apoint P.

In the dipper bath endpdnts P1 and P2 (seeFigure 3.22) are tested against the window, and their code words
codel andcode2 areformed. We then must test for “trivial accept” and “trivial rejed”.

e trivial accept: Both endpdntsare inside, so bah codes codel andcode2 areidenticdly 0. In C/C++ this
isquickly determined using the bit-wise OR: atrivial accept ocaursif (codel | code2 ) isO.

e trivial rejed: A trivia regjed occursif both endpdntslie outside the window on the same side: both to the
|eft of the window, bath abowve, bath below, or bath to the right. Thisis equivalent to their codes having at least
one 1 in the same hit pasition. For instanceif codel is0110andcode2 is0100then P1 lieshbaoth above andto
the right of the window, while P2 lies above but neither to the left nor right. Sincebaoth pantslie &owve, no part
of theline can lieinside the window. So trivial rejedionis easily tested using the bit-wise AND of codel and
code? : if they have some 1 in the same pasitionthen codel & code2  doesalso, and (codel & code?2)

will be norzero.

Chopping when thereis neither trivial accept nor rejed.

Anather implementationisaueis efficient choppang d the portion o a line segment that lies outside the
window, asin Figure 3.22. Suppase it is known that point P with code word code lies outside the window. The

Computer Graphics Chap 3 091/99 ‘38 PM page 47




individual bits of code can betested to seeon which side of the window P lies, and the dhopping can be
accomplished asin Equation 3.5. Figure 3.85 shows a choproutine that finds the new point (such as A in Figure
3.22) andreplaces P with it. It uses the bit-wise AND of code with a mask to determine where P liesrelative to
the window.

ChopLine (Point2 &P, unsigned char code)

if(code & 8){  // to the Left
P.y += (window.| - P.x) * dely / delx);
P.x = window.l;

}

else if(code & 2){  // to the Right
P.y += (window.r - P.x) * dely / delx;
P.x = window.r;

}

else if(code & 1){ I/ below
P.x += (window.b - P.y) * delx / dely;
P.y = window.b;

}

else if(code & 4){  // above
P.x += (window.t - P.y) * delx / dely;
P.y = window.t;

}

}

Figure 3.85. Chopping the segment that lies outside the window.

Write a omplete implementation o the Cohen Sutherland algorithm, putting together the pieces described here
with those in Sedion 33.2. If you dothisin the mntext of a Canvas classimplementation as discussed in the
next Case Study, consider how the routine shoud best accessthe private data members of the window and the
pointsinvalved, and develop the mde acordingly.

Test the dgorithm by drawing awindow and alarge asortment of randamly chasen lines, showing the parts
that lie inside the window in red, and those that lie outside in black.

Practice Exercises.

3.10.1. Why will a “divide by zero” never occur? Consider a vertical line segment such that delx is zero.
Why isthe mde P.y += (  window.I - P.x) * dely / delx) that would cause adivide by zero
never readed? Similarly explain why ead of the four statements that compute delx/ dely or dely/ delx
are never readed if the denominator happensto be zeo.

3.10.2. Do two chopsin the sameiteration? It would seam to improve performanceif we replacel lines gich
“else if(code & 2) " with “if(c & 2) " andtried to dotwo line “chops’ in succesgon. Show that this
can lea to erroneous endpdadnts being computed, and henceto dsaster.

3.10.3. Case Study 3.3. Implementing Canvas for Turbo C++.

(Level of Effort: Ill) It isinteresting to develop a drawing classlike Canvasin which al the detail s are worked
out, to seehow the many ingredients go together. Sometimesit is even necessary to dothis, aswhen a
suppatinglibrary like OpenGL is nat avail able. We design Canvas here for a popuar graphics platform that
uses Borland' s Turbo C++.

We want an implementation d the Canvas classthat has esentially the same interface @ that in Figure 3.25.
Figure 3.86 shows the version we develop here (omitting perts that are simple repeas of Figure 3.25). The
corstructor takes a desired width and height but notitle, since Turbo C++ does not suppart titled screen
windows. There ae several new private data members that internally manage dipping and the window to
viewport mapping.

class Canvas {
public:
Canvas( int width, int height); // constructor
setWindom(),setViewport(), lineTo(), etc .. as before

Computer Graphics Chap 3 091/99 ‘38 PM page 48




private:
Point2 CP; /I current position in the world
IntRect viewport; // the current window
RealRect window; // the current viewport
float  mapA, mapB, mapC, mapD; // data for the window to viewport mapping
void makeMap(void); // builds the map
int  screenWidth, screenHeight;
float  delx,dely; /I increments for clipper
char codel, code?2; // outside codes for clipper
void ChopLine(tPoint2 &p, char c);
int clipSegment(tPoint2 &pl, tPoint2 &p2);

}

Figure 3.86. Interfacefor the Canvas classfor Turbo C++.

Implementation of the Canvas class
We show some of the Carnvas member functions here, to ill ustrate what must be done to manage the window to
viewport mapping and clipping ourselves.

1). The Canvas constructor.

The onstructor is passed the desired width and height of the screen. Turbo C++ is placed in graphics mode at
the highest resolution supported by the graphics gystem. The actual screen width and height avail able is tested,
and if it islessthan was requested, the program terminates. Then a default window and viewport are establi shed,
and the window to viewport mapping is built (inside setViewport  ().)

Canvas :: Canvas(int width, int height)

{
int gdriver = DETECT, gmode; //Turbo C++ : use best resolution screen
initgraph(&gdriver, &gmode, "); // go to “graphics” mode
screenWidth = getmaxx() + 1; // size of available screen
screenHeight = getmaxy() + 1;
assert(screenWidth >= width); // as wide as asked for?
assert(screenHeight >= height); // as high as asked for?
CP.set(0.0, 0.0);
window.set(-1.0,1.0,-1.0,1.0); // default window
setViewport(0,screenWidth, 0, screenHeight); // sets default map too

}

2). Setting the window and viewport and the mapping.

Whenever either the window or viewport is st, the window to viewport mapping is updated to insure that it is current.
A degenerate window of zero height causes an error. The mapping uses window and viewport data to compute the four
coefficients A, B, C, and D required.

[1<<<<<<<<<LLLLL<<  set Window >>>>>5>555>555>>>>>>
void Canvas:: setWindow(float I, float r, float b, float t)

{
window.set(l, r, b, t);
assert(t = b); //degenerate !
makeMap(); // update the mapping
}

fl<<<<<<cggggggg<<< setViewport >>>>>>55>>55>>>>>>>
void Canvas:: setViewport(int I, int r, int b, int t)
{
viewport.set(l, r, b, t);
makeMap(); // update the mapping
}

ll<<<<<<<gg<g<<<<< makeMap >>>>>>>>>>>>>>>>>>>>>
void Canvas:: makeMap(void)
{ /I set mapping from window to viewport

Computer Graphics Chap 3 091/99 ‘38 PM page 49



intRect  vp = getViewport(); // local copy of viewport
RealRect win = getWindow(); // local copy of window
float winWid = win.r - win.|;

float winHt = win.t - win.b;

assert(winWid != 0.0); assert(winHt != 0.0); // degenerate!
mapA = (vp.r - vp.l)/winWid; // fill in mapping values
mapB = vp.l - map.A * win.l;

mapC = (vp.t - vp.b)/winHt;

mapD = vp.b - map.B * win.b;

}

3). moveTo(), and lineTo () with clipping.

The routine moveTo() convertsits point from world coordinates to screen coordinates, and call s the Turbo C++
spedfic moveto () to update theinternal current position maintained by Turbo C++. It also updates Canvas
world coordinate CP. RoutinelineTo () works smilarly, but it must first determine which part if any of the
segment lies within the window. To do thisit uses clipSegment () described in Sedion 3.3 and in Case Study
3.2, which returnsthefirst  and second endpoints of the inside portion. If so it movestofirst  and drawsa
lineto second . It finishes with amoveTo() to insure that the CP will be airrent (bath the Canvas CP and the
internal Turbo C++ CP).

ChopLine and ClipSegment aresameasin Case Study 3.2.

[1<<<<LLLLLLLLLLLLLLLLLLLLL moveTo >>>>>5>>>555>>>>55>>
void Canvas:: moveTo(float x, float y)

{
int sx = (int)(mapA * x + mapC);
int sy = (int)(mapB * y + mapD);
moveto(sx, sy); /I a Turbo C++ routine
CP.set(x, y);
}

[l<<<<g<ggggg<<<<<<<L<L [ineTo >>>>>>>>>>>

void Canvas:: lineTo(float x, float y)

{// Draw a line from CP to ,y), clipped to the window
Point2 first = CP; // initial value of first
Point2 second(x, y); // initial value of second
if(clipSegment(first, second)) // any part inside?

moveTo( first.x, first.y); // to world CP

int  sx = (int)(mapA * second.x + mapC);
int sy = (int)(mapB * second.y + mapD);
lineto(  sx,sy); // a Turbo C++ routine

}
moveTo(X, y); /[ update CP
}

Write afull implementation d the Canvas classfor Turbo C++ (or a similar environment that requires you to
implement cli pping and mapping). Cope gpropriately with setting the drawing and badkgroundcolors (thisis
usually quite system-spedfic). Test your classby usingit in an applicaion that draws polyspirals as gedfied by
the user.

3.10.4. Case Study 3.4. Drawing Arches.

(Level of Effort: Il) Arches have been used throughod history in architectural compasitions. Their structural
strength and anamental beauty make them very important elementsin structural design, and arich variety of
shapes have been incorporated into cathedral s, bridges, doaways, etc.

Figure 3.87 shows two besic arch shapes. The achin pert @) is centered at the origin, and hes awidth of 2W.

The ach begins at height H above the base line. Its principal element isa half-circle with aradiusR=W. The
ratio H/W can be aljusted acwrding to taste. For instance, H/W might be related to the golden ratio.

Computer Graphics Chap 3 091/99 ‘38 PM page 50



a) Rounded Arch b). Pointed Arch

=y

H

Figure 3.87. Two basic arch forms.

Figure 3.73bshows an idedized version d the seaond most famous arch shape, the pointed or “equil ateral”
arch, often seen in cathedrals'0. Here two arcs of radius R = 2W meet direcly above the center. (Throughwhat
angle does eath arc sweg?)

The ogee11 (or “ked”) arch is shown in Figure 3.88. This arch was introduced abou 1300AD, and was popuar
in architecural structures throughou the late Midde Ages. Circles of radiusf Rrest ontop o arounced arch of
radius R for some fradionf. Thisfixesthe position d the two circles. (What are the wordinates of point C?)
On ead side two arcs blend together to form a smooth panted top. It isinteresting to work out the parameters
of the various arcsin terms of W andf.

y
//“\\ //“\\
/ AN / AN
/ \|/ A
/ \ \
f c )
\ fR /
\ /
\\ — = 7
R
Wy
H

Figure 3.88. The Ogee ach.

Develop routines that can draw ead of the ach types described above. Also write an appli cation that draws an
interesting colledion o such archesin a castle, mosque, or bridge of your design.

3.10.5. Case Study 3.5. Some Figures used in Physics and Engineering.

(Level of Effort: Il) This Case Study workswith a wlledion d interesting pctures that arise in certain topics
within physics and engineaing. The first ill ustrates a physica principal of circlesinterseding at right angles;
the secondcreaes a chart that can be used to study eledromagnetic phenomena; the third develops ymbals that
are used in designing dgital systems.

1). Eledrostatic Fields. The pattern of circles snown in Figure 3.89is gudied in physics and eledricd
engineaing, asthe dedrostatic field lines that surroundeledricadly charged wires. It also appeasin
mathematics in conredion with the analytic functions of a mmplex variable. In Chapter 5 these families also
are foundwhen we examine afascinating set of transformations, “inversionsin a drcle.” Here we view them
simply as an elegant array of circles and consider how to draw them.

10rrom J.Fleming, H. Honou,, N. Pevsner: Dictionary of Architedure. Penguin Books, London 1980

11From the old French ogive meaning an S-shaped curve.

Computer Graphics Chap 3 091/99 ‘38 PM page 51



two-pointers

surrounders

Figure 3.89. Families of orthogoral circles..

There ae two families of circles, which we will cdl “two-pointers’ and “surrouncers’. The two-pointers family
consists of circlesthat passthroughtwo gven padnts. Suppase the two pdnts are (-a, 0) and (a, 0). The two-
pointers can be distinguished by some parameter m, and for ead value of m two diff erent circles are generated
(seeFigure 3.75). The drcles have canters and radii given by:

center= (0, + a\/m2 -1) and radius=am
asm varies from 1 to infinity.

Circlesin the surrounders family surround o of the points(-a, 0) or ( a, 0). The ceanters and radii of the
surrouncers are dso distingushed by a parameter n and have the values

center = (x an, 0) andradius=a n2-1

asn varies from 1 to infinity. The surrouncer circles are dso knawvn as “circles of Appdonius,” and they arise
in problems of pursuit [Ball & Coxeter]. The distances from any pdnt ona drcle of Appdoniusto the points
(-a, 0) and (a, 0) have a onstant ratio. (What isthisratio in terms of a andn?)

The “surrouncer” family isintimately related to the two-pointer family: Every surrouncer circle “cuts’ through
every two-pointer circle & aright angle. The families of circles are thus sid to be orthogonal to ore ancther.

Write and exercise aprogram that draws the two famili es of orthogoral circles. Chocse sets of values of mand
n so that the picture iswell balanced and deasing.

2). Smith Charts. Ancther pattern of circlesisfoundin Smith charts, familiar in eledricd enginegingin
conredion with eledromagnetic transmisson lines. Figure 3.90 shows the two arthogoral families foundin
Smith charts. Here dl members of the famili es passthrougha common pant (1, 0). Circlesin family A have
certersat (1 -m, 0) and radii m, and circlesin family B have centersat (1, +n) and radii n, where bath mandn
vary from 0 to p. Write and exercise aprogram that draws these families of circles.

1* Ed. Figure 4.31

Figure 3.90. The Smith Chart.
3). Logic Gatesfor Digital Circuits. Logic gates are familiar to scientists and enginee's who study besic

eledronic drcuits foundin computers. Each type of gateis ymboalized in a drcuit diagram by a charaderistic
shape, several of which are based onarcs of circles. Figure 3.91a shows the shape of the so-caled

Computer Graphics Chap 3 091/99 ‘38 PM page 52



a). NAND gate b). NOR gate

32 !
|
I
I
I

1
4>
|
|
26
13 M
|

Figure 3.91. Standard Graphic Symbal for the Nand and Nor Gates.

NAND gate, acoording to aworld-wide standard12 The NAND gateishbasicdly arounded arch paced onits
side. The ac hasradius 13 uritsrelative to the other elements, so the NAND gate must be 26 uritsin height.

Figure 3.91b shows the standard symbal for a NOR gate. It is smilar to a pointed arch turned onits sde. Three
arcs are used, ead having aradius of 26 urits. (The pulished standard as s1own has an error in it, that makes it
impossble for certain elements to fit together. What isthe aror?)

Write aprogram that can draw both of these drcuit types at any size and pasition in the world. (For the NOR
gate find and implement a reasonable crredionto the aror in Figure 3.77b) Also arrange matters  that your
program can draw these gates rotated by 90 , 18C°, or 27C°.

3.10.6. Case Study 3.6. Tilings.

(Level of Effort: II) Computer graphics offers a powerful tod for creaing gdeasing pctures based on geometric
objeds. One of the most intriguing types of pictures are those that apparently repea forever in al diredions.
They are cdled varioudy tilings, and repeat patterns. They are studied in greaer detail i n Chapter 2?72

A). Basic Tilings. Figure 3.92 shows abasic tiling. A matif, in this case four quarter circlesin asimple
arrangement, isdesigned in a square region o the world. To draw atiling ower the plane based onthis maotif, a
cdledion d viewports are aeaed side by side that cover the display surface and the motif is drawn orce
inside eat viewport.

a). b).

Figure 3.92. A motif and the resulting tili ng.

Write aprogram that:

a). chooses a square window in the world, and daws sme interesting motif (possbly clipping pations of it, as
in Figure 3.14);

b). successvely draws the picture in a set of viewports that abut one ancther and together cover the display
surface

Exercise your program with at least two motifs.

12The Institute of Eledrica and Eledronic Enginea's (IEEE) puHishes many things, including standard definiti ons
of termindogy and gaphic shapes of circuit elements. These drawings are taken from the standard dacument: |IEEE
Std. 91-1984.

Computer Graphics Chap 3 091/99 ‘38 PM page 53



B). Truchet Tiles. A dight variation d the method above seleds siccessve motifs randamly from a “pod” of

candidate motifs. Figure 3.93a shows the well-known Truchet tiles13, which are based ontwo guerter circles
centered at oppaite orners of asquare. Tile 0 andtile 1 dffer only by a 90° rotation.

artist sketches the two til es here

Figure 3.93. Truchet Tiles. a). the two tiles. b). A truchet pattern

Figure 3.93.b.

Write an application that draws Truchet tiles over the entire viewport. Each successvetile usestile 0 or tile 1,
seleded at random.

Curves other than arcs can be used aswell, as siggested in Figure 3.94. What condtions shoud be placal on

the angle with which ead curve meesthe edge of thetile in order to avoid sharp cornersin the resulting curve?
Thisnation can also be extended to include more than two til es.

S
o

Figure 3.94. Extension d Truchet tiles.

Extend the program abowve so that it introduces random seledions of two or more motifs, and exercise it onthe
motifs you have designed. Design motifsthat “blend’ together properly.

3.10.7. Case Study 3.7. Playful Variations on a Theme.

(Estimate of time required: four hours). In Sedion 38 we discussed how to draw a aurve represented
parametricdly by P(t): take asuccesson d instants{t} and conred the successve "samples’ (x(t), y(t))
by straight lines. A wide range of pictures can be aeded by varying the way in which the samples are
taken. We suggest some possbhiliti es here.

13gmith, C. “The Tili ng Patterns of Sebastian Truchet and the topdogy o structural hierarchy.” Leonardo, 20:4, pp:
373-385, 1987 (refd in Pickover, p.386)

Computer Graphics Chap 3 091/99 ‘38 PM page 54



Write aprogram that draws ead o the four shapes:
a). an elli pse

b). ahyperboa

¢). alogarithmic spiral

d). a5-petal rose arve

for eat of the methods described below for obtaining t-samples.

1). Unevenly Spaced Values of t. Instead of using a constant increment between values of t when
sampling the functions x() and y(), use avaryingincrement. It isinteresting to experiment with different
choicesto seewhat visual effeds can be adieved. Some possbiliti es for a sequence of (n+1) t-values
between Oand T (suitably chosen for the aurve shape & hand) are

« t, =T+/i/ n: The samples cluster closer and closer together asi increases.

«t =T(i/n)’: Thesamples pread out asi increases.

«t, =T(i/n)+ Asin(ki/n) The samples cyclicaly cluster together or spread apart. Constants A and
k are chosen to vary the anourt and speed of the variation.

2). Randomly Seleded t-Values. The t-values can be chasen randamly asin
ot = randChoase(0,T)

Here randChoose(0,T) isafunction (devised by yoy that returns a value randomly seleded from the
range0to T ead timeit iscdled. (SeeAppendix 3 for a basic randam number generator.)

Figure 3.95 shows the palyline generated in this fashion for points on an €lli pse. It isinteresting to watch
such a picture develop onadisplay. A flurry of seemingly urrelated linesfirst appeas, but soonthe g/e
deteds ome order in the chaos and “sees’ an €lli pticd “envelope” emerging aroundthe doud d lines.

1st Ed. Figure 4.26

Figure 3.95. A randam €lli pse palyline.

Alternatively, a sequence of increasing t-values can be used, generated by

ot =t + randChoase(0, r)

wherer is me small paositive value.

3). Conneding Verticesin Different Orders

In apopuar children’s game, pins are driven into aboard in some pattern, and a pieceof thread is woven

aroundthe pinsin some order. The t-values here define the positions of the pinsin the board, and
worldLineTo () playstherole of the thread.

The samples of P(t) are prestored in a suitable aray P[i],i=0,1,..,n. The padyline is drawn by
sequencing in an interesting way through valuesof i.  That is, the sequencei,, i,, .... is generated from
values between Oand n, andfor ead index i, a cdl toworldLineTo(P[ i,]) ismade. Some

posshiliti es are:

» "Randam Ded”: the sequencei,, i,, .... isarandan permutation d thevalues0,1,..,n, asin deding a
fixed set of cards from a shuffled dedk.

« Every pair of pointsis conreded bya straight line. So every pair of valuesin therange 0,1,..,n appeas
in adjacent spots smewhere in the sequencei,, i,, .... The prime rosette of Chapter 5 gave one example,
where lines were drawn conreding ead pant to every other.

Computer Graphics Chap 3 091/99 ‘38 PM page 55



* One can also draw “webs,” as suggested in Figure 3.96. Here the index values cycle many times
throughthe possble values, skipping bysome M ead time. Thisis easily dore by forming the next index
from the previous one usingi = (i + M) mod (n+1).
[1* Ed. Figure 4.27 |

Figure 3.96. Adding websto a aurve.

3.10.8. Case Study 3.8. Circles Rolling around Circles.

(Level of Effort: II) Ancther large family of interesting curves can be useful in graphics. Consider the
path traced by apoint rigidly attached to a drcle athe drcle rolls aroundancther fixed circle [thomass3,
Yates46]. These ae cdled trochoids, and Figure 3.97 shows how they are generated. The tradng pant is
attached to the ralling circle (of radius b) at the end d arod k units from the ceanter. The fixed circle has
radius a. There ae two basic kinds: When the drcle roll s externally (Figure 3.97a), an epitrochoid is
generated, and when it rollsinternally (Figure 3.97b), a hypotrochoid is generated. The dnildren’s game
Spirograph# is a familiar tod for drawing trochoids, which have the foll owing parametric forms:

[1* Ed. Figure 4.23

Figure 3.97. Circlesralling aroundcircles.

The epitrochoid:
x(t) = (a+ b)cog2pt) - keog2p 2t
b
. . (a+ b)t (3.24
y(t) = (a+b)sin(2pt) - kS|n(2p—b)
The hypotrochoid:
x(t) =(a- b)coqd2pt) + kcoinw)
b
(3.25)
(a- b)t

y(t) = (a- b)sin(2pt) - ksin(ZP—b)

An elli pse results from the hyparochoid when a = 2b for any k.

When the tradng pant lies onthe rolli ng circle ( k = b) these shapes are cdl ed cycloids. Some familiar
spedal cases of cycloids are

Epicycloids:
Cardioid: b=a
Nephroid: 2b=a
Hypocycloids:1°
Line segment: 2b=a
Deltoid: 3b=a
Astroid: 4b = a.

Some of these ae shawn in Figure 3.98. Write aprogram that can draw bath epitrochoids and
hypdrochoids. The user can chocse which family to draw, and can enter the required parameters.
Exercise the program to draw ead o the spedal caseslisted abowe.

1% Ed. Figure 4.24.

Figure 3.98. Examples of cycloids: a) nephroid, b) a/b = 10, c) deltoid, d) astroid.

A trademark of Kenner Prodicts.
15Note that the astroid is also a superelli pse! It has a bulge of 2/3.

Computer Graphics Chap 3 091/99 ‘38 PM page 56



3.10.9. Case Study 3.9. Superellipses.

(Level of Effort: I) Write and exercise aprogram to draw superelli pses. To draw ead superelli pse, the
user indicates oppasite arners of its boundng, and types a value for the bulge, whereuponthe spedfied
superelli pseis drawn.

(Optional). Extend the program so that it can draw rotated superelli pses. The user types an angle dter
typing the bulge.

3.11. For Further Reading.

When getting started with graphicsit is very satisfying to write gplications that produce fascinating curves and
patterns. This leads you to explore the deg connedion between mathematics and the visual arts. Many bools
are avail able that offer guidance and provide myriad examples. McGregor and Watt's THE ART OF
GRAPHICS FOR THE IBM PC, [mcgregor86] off ers many algorithms for creaing interesting petterns. Some
particularly nateworthy books on curves and geometry are Jay Kappraff s CONNECTIONS [kappraff91],
Dewdney’s THE ARMCHAIR UNIVERSE [dewdney88], Stan Ogilvy’s EXCURSIONS IN
GEOMETRY[ogilvy69], Pedoe's GEOMETRY AND THE VISUAL ARTS [pedoe76], Roger Sheperd’s MIND
SIGHTS [shep9(], and the series of books on mathematica excursions by Martin Gardner, (such as TIME
TRAVEL [gardner88] and PENROSE TILES TO TRAPDOOR CIPHERS [gardner89]). Coxeter has written
elegant books on geometry, such as INTRODUCTION TO GEOMETRY[Coxeter69] and MATHEMATICAL
RECREATIONS AND ESSAY S[ball 74], and Hoggar's MATHEMATICS FOR COMPUTER GRAPHICS
[hogaar92] discusses many feaures of iterated function systems.

Computer Graphics Chap 3 091/99 ‘38 PM page 57



(for ECEG660, Fall, 1999)

Chapter 4. Vectors Tools for Graphics.

“The knowledge at which geometry aims is knowledge of the eternal,
and not of aught perishing and transient.”
Plato
For us, whose shoulders sag under the weight of the heritage of Greek thought
and who walk in the paths traced out by the heroes of the Renaissance,
a civilization without mathematics is unthinkable.
Andre Weil
“Let us grant that the pursuit of mathematics is a divine madness of the huniah spir
Alfred North Whitehead
“All that transcend geometry, transcends our comprehension”.
Blaise Pascal

Goals of the Chapter
- To review vector arithmetic, and to relate vectors to objects of iniargstphics.
To relate geometric concepts to their algebraic representations.
To describe lines and planes parametrically.
To distinguish points and vectors properly.
To exploit the dot product in graphics topics.
To develop tools for working with objects in 3D space, including thesgnaxduct of two vectors.

Preview

This chapter develops a number of useful tools for dealing with gfeicrobjects encountered in
computer graphics. Section 4.1 motivates the use of vectors inggaphd describes the principal
coordinate systems used. Section 4.2 reviews the basic ideas of \autbdescribes the key operations
that vectors allow. Although most results apply to any number of diorensectors in 2D and 3D are
stressed. Section 4.3 reviews the powerful dot product operatioapplies it to a number of geometric
tasks, such as performing orthogonal projections, finding thendesfaom a point to a line, and finding
the direction of a ray “reflected” from a shiny surface. Section 4.4wewiee cross product of two
vectors, and discusses its important applications in 3D graphics.

Section 4.5 introduces the notion of a coordinate frame anddwmeous coordinates, and stresses that
points and vectors are significantly different types of geometric objeelsoltievelops the two principal
mathematical representations of a line and a plane, and shows wheieesathl. It also introduces
affine combinations of points and describes an interesting kiadiofation known as “tweening”. A
preview of Bezier curves is described as an application of tweening.

Section 4.6 examines the central problem of finding where two line segimensect, which is vastly
simplified by using vectors. It also discusses the problem dihfinthe unique circle determined by three
points. Section 4.7 discusses the problem of finding where aHitsyé line or plane, and applies the
notions to the clipping problem. Section 4.8 focuses on clippieg kgainst convex polygons and
polyhedra, and develops the powerful Cyrus-Beck clipping algorithm.

The chapter ends with Case Studies that extend these tools and proaidersigs to enrich your
graphics programming skills. Tasks include processing polygonsyménfy experiments in 2D “ray
tracing”, drawing rounded corners on figures, animation by tweeniuigdeveloping advanced clipping
tools.

4.1 Introduction.

Hill - Chapter 4 09/23/99 page 1



In computer graphics we work, of course, with objects defined in adimesnsional world (with 2D objects

and worlds being just special cases). All objects to be drawn, and therasirased to draw them, have shape,
position, and orientation. We must write computer programs that someisonte: these objects, and describe
how light bounces around illuminating them, so that the final pixel valuéiseodisplay can be computed.
Think of an animation where a camera flies through a hilly scene contaarilogs buildings, trees, roads, and
cars. What does the camera “see”? It all has to be converted ultimatelyliersuftis a tall order.

The two fundamental sets of tools that come to our aid in graphige@o analysisindtransformationsBy
studying them in detail we develop methods to describe the vagousefric objects we will encounter, and
we learn how to convert geometric ideas to numbers. This lead®lieetion of crucial algorithms that we can
call upon in graphics programs.

In this chapter we examine the fundamental operations of vector algebragdmusthey are used in graphics;
transformations are addressed in Chapter 5. We start at the beginnireyelog @ number of important tools
and methods of attack that will appear again and again throughout theflyamu have previously studied
vectors much of this chapter will be familiar, but the numerous applicaifarestor analysis to geometric
situations should still be scrutinized. The chapter might strike you ashammstics text. But having it all
collected in one place, and related to the real problems we encounigpliicgr may be found useful.

Why are vectors so important?
A preview of some of some situations where vector analysis comes todhe neight help to motivate the
study of vectors. Figure 4.1 shows three geometric problems thatragisehics. Many other examples could

be given.
a). b). c).
(4,6) '
: '/_center? E
)
. *
(2:2) (7,1) \viewplane

Figure 4.1. Three sample geometric problems that yield readily tor\awlysis.

Part a) shows a computer-aided design problem: the user bed fileee points on the display with the mouse,
and wants to draw the unigue circle that passes through them. (Canualiz®ithis circle?). For the
coordinates given where is the center of the circle located? We see in Section 4.6 finablain is thorny
without the use of vectors, but almost trivial when the right veotis fare used.

Part b) shows a camera situated in a scene that contains a ChristmEsetieganera must form an image of the
tree on its “viewplane” (similar to the film plane of a physical camera), whilthbe transferred to a screen
window on the user’s display. Where does the image of the tree appear on thisupthwhat is its exact
shape? To answer this we need a detailed study of perspective pnsjeeticch will be greatly aided by the
use of vector tools. (If this seems too easy, imagine that you arepiegedn animation, and the camera is
zooming in on the sphere along some trajectory, and rotatingl@esitso. Write a routine that generates the
whole sequence of images!)

Part c) shows a shiny cone in which the reflection of a cube caefeGi®en the positions of the cone, cube,
and viewing camera, wheexactlydoes the reflected image appear, and what is its color and shape? When
studying ray tracing in Chapter 15 we will make extensive use of geetod we will see that this problem is
readily solved.

Some Basics.

All points and vectors we work with are defined relative to somedguate system. Figure 4.2 shows the
coordinate systems that are normally used. Each system bégiarcalledJ and some axes emanating from
J . The axes are usually oriented at right angles to one another. Distanmeskae along each axis, and a

Hill - Chapter 4 09/23/99 page 2



point is given coordinates according to how far along each dids.ifPart a) shows the usual two-dimensional
system. Part b) showsright handed3D coordinate system, and part ¢) shodeftizhandecdcoordinate system.

y
a). b). o 7
z
(®]
(0]
z X
X

Figure 4.2. The familiar two- and three-dimensional coordinates)s.

In a right handed system, if you rotate yaght hand around theaxis by sweeping from the positixe
axis around to the positiweaxis, as shown in the figure, your thumb points along ts&ipez-axis. In a
left handed system, you must do this with ylafirthand to make your thumb point along the positive
axis. Right-handed systems are more familiar and are conventionallinusathematics, physics, and
engineering discussions. In this text we use a right-handednsygten setting up models for objects. But
left-handed systems also have a natural place in graphics, whierg détt viewing systems and
“cameras”.

We first look at the basics of vectors, how one works with them, and legvaith useful in graphics. In
Section 4.5 we return to fundamentals and show an important distibetiween points and vectors that, if
ignored, can cause great difficulties in graphics programs.

4.2. Review of Vectors.
“Not only Newton’s laws, but also the other laws of physics, so far as we know todayh&awo
properties which we call invariance under translation of axes and rotation of exese Properties are so
important that a mathematical technique has been developed to take adwafritagya in writing and using
physical laws.. called vector analysis.
Richard Feynman

Vector arithmetic provides a unified way to express geometric ideasaitzply. In graphics we work with
vectors of two, three, and four dimensions, but many results neeldesatated once and they apply to
vectors of any dimension. This makes it possible to bring togetherribas/aases that arise in graphics
together into a single expression, which can be applied to a broetywdriasks.

Viewed geometrically, vectors are objects having length and directiery.ctinrespond to various physical
entities such as force, displacement, and velocity. A vector isdiféem as an arrow of a certain length
pointing in a certain direction. It is valuable to think of a vector gddoally as alisplacemenfrom one
point to another

Figure 4.3 uses vectors to show how the stars in the Big Dipper aregnooeintime [kerr79]. The current
location of each star is shown by a point, and a vector shows the veloe#tgtostar. The “tip” of each
arrow shows the point where its star will be located in 50,000 yeaxugng a very different Big Dipper
indeed!

Ao
////*!\\SF“_:T_
\
\

TN

(‘ |
Wy

Hill - Chapter 4 09/23/99 page 3



Figure 4.3. The Big Dipper now and in AD 50,000.

Figure 4.4a shows, in a 2D coordinate system, the two gemtel, 3) andQ = (4, 1). The displacement

from P to Q is a vectow having components (3, -2)calculated by subtracting the coordinates of the points

individually. To “get from”P to Q we shift down by 2 and to the right by 3. Because a vector is a

displacement it has size and direction but no inherent locatierwb arrows labeledin the figure are in

fact the same vector. Figure 4.4b shows the corresponding situatimeeérdimensions. is the vector from
ointP to pointQ. One often states:

a). b).

I %%

N oW A
T T T 1
/
o/

<

Figure 4.4. A vector as a displacement.
» Thedifference between two points is a vectar=Q - P;

Turning this around, we also say that a pQris formed by displacing poif by vectorv; we say thav
“offsets” P to form Q. Algebraically,Q is then thesum: Q=P +v.

» Thesum of a point and a vector is a poift+v = Q.

At this point we represent a vector through a list of its componentsdemensional vector is given by an
n-tuple

W= (W, W2, . . . W) (4.1)

Mostly we will be interested in 2D or 3D vectors as i (3.4, -7.78) ot = (33, 142.7, 89.1). Later when it
becomes important we will explore the distinction between a vector amegpilitsentationand in fact will
use a slightly expanded notation to represent vectors (and pimis)g a vector as eow matrixlike t =
(33, 142.7, 89.1) fits nicely on the page, but when it matters we wilaidsvrite vectors aolumn

matrices

33
34
r= ,ort= 1427
-7.78
89.1

It matters when we want to multiply a point or a vector by a matrix, as wesskah Chapter 5.

4.2.1. Operations with vectors.

Vectors permit two fundamental operations: you can add them, arwhgaouultiply them bgcalars(real
numbers). So ifa andb are two vectors, anglis a scalar, it is meaningful to form bath b and the
productsa. For example, i = (2, 5, 6) andb = (-2, 7, 1), we can form the two vectors:

a+b=(0,12,7)

lUpper case letters are conventionally used for points, ddthbe lower case letters for vectors.
2 There are also systems where the scalars can be complex numbers; we do nahwioekwvhere.

Hill - Chapter 4 09/23/99 page 4



6a= (12, 30, 36)

always performing the operationemponentwise-igure 4.5 shows a two-dimensional example, using
(1, -1) andb = (2, 1). We can represent the addition of two vectors graphicdilpinifferent ways. In
Figure 4.5a we show both vectors “starting” at the same pointpthmening two sides of a parallelogram.
The sum of the vectors then a diagonal of this parallelogram, the diagonal that emanaestfe binding
point of the vectors. This view — the “parallelogram rule” for addiecfars — is the natural picture for
forces acting at a point: The diagonal gives the resultant force.

b).

a+b

Figure 4.5. The sum of two vectors.

Alternatively, in Figure 4.5b we show one vector starting at gal lof the other (i.e., place the taibadt

the head o&) and draw the sum as emanating from the tailtofthe head db. The sum completes the
triangle, which is the simple addition of one displacement to another. Therents of the sum are clearly
the sums of the components of its parts, as the algebra dictates.

Figure 4.6 shows the effect of scaling a vector.d=02.5 the vectos a has the same direction agut is
2.5 times as long. Whesis negative, the direction efa is opposite that ai: The case = -1 is shown in
the figure.

Figure 4.6. Scaling a vector.

Subtraction follows easily once adding and scaling have been estdbtistt is simplya + (-c). Figure 4.7
shows the geometric interpretation of this operation, forming tfexeliice ofa andc as the sum ai and ¢
(Figure 4.7b). Using the parallelogram rule, this sum is seen iguiaé t® the vector that

a). C).

a-cCc

Figure 4.7. Subtracting vectors.

emanates from the headwénd terminates at the headadqfFigure 4.7c¢). This is recognized as one diagonal
of the parallelogram constructed usagndc. Note too that it is the “other” diagonal from the one that
represents the suat c.

4.2.2. Linear Combinations of Vectors.

With methods in hand for adding and scaling vectors, we can define a linear caontwhsectors. To

form alinear combination of two vectorsy andw, (having the same dimension) we scale each of them by
some scalars, sayandb, and add the weighted versions to form the new veator; b w. The more

general definition for combiningn such vectors is:

Hill - Chapter 4 09/23/99 page 5



Definition:

A linear combination of them Vectorsv,, v, . . .,V is a vector of the form

w=a Vv, +avVv,+t..+a v (4.2)
Whereal, a,...,a are scalars.

For example, the linear combination 2(3, 4,-1) + 6(-1, 0, 2) forms ther\{@¢#®, 10). In later chapters we
shall deal with rather elaborate linear combinations of vectors, especially whesergmg curves and
surfaces using spline functions.

Two special types of linear combinations, “affine” and “convex” combinatemesparticularly important in
graphics.

Affine Combinations of Vectors.
A linear combination is aaffine combination if the coefficientsa, a,, . . . ,a,add up to 1. Thus the linear
combination in Equation 4.2 is affine if:

ata+..+a =1 (4.3)

For example, & + 2b - 4cis an affine combination @, b, andc, but 3a + b - 4cis not. The
coefficients of an affine combination of two vectarandb are often forced to sum to 1 by writing one as
some scalarand the other as @-

(1) a+@)b (4.4)

Affine combinations of vectors appear in various contexts, as awaffimbinations of points, as we see
later.

Convex Combinations of Vectors.

Convex combinations have an important place in mathematicsuemerous applications in graphics. A
convex combinationarises as a further restriction on an affine combination. Not onlytimeist
coefficients of the linear combination sum to one; each one must also be riwenddnee linear
combination of Equation (4.2.2) ¢®nvexif:

a+a+..+a =1, (4.5)
andagj 3 0, fori=1,...m. As a consequence allmust lie between 0 and 1. (Why?).

Thus .&+.7b is a convex combination afandb, but 1.& -.8b is not. The set of coefficientg, a,, . . . ,a

is sometimes said to formpartition of unity , suggesting that a unit amount of “material” is partitioned into
pieces. Convex combinations frequently arise in applications whers ameking a unit amount of some

brew and can combine only positive amounts of the various ingredieetsappear in unexpected

contexts. For instance, we shall see in Chapter 8 that “spline” curves are in faot combinations of

certain vectors, and in our discussion of color in Chapter 12 wefisitaihat colors can be considered as
vectors, and that any color of unit brightness may be considered to beea combination of three primary
colors!

We will find it useful to talk about the “set of all convex combinations” ofleciion of vectors. Consider
the set of all convex combinations of the two vectgrandv.. It is the set of all vectors

v=(l-a)vi+aw (4.6)

as the parameteris allowed to vary from 0 to 1 (why?) What is this set? Rearranging tlatian,v is seen
to be:

Hill - Chapter 4 09/23/99 page 6



v=vi+a (V-Vy) 4.7)

Figure 4.8a shows this to be the vector that {glus some fraction of, - v, so the tip o¥ lies on the line
joining v; andv,. As a varies from 0 to 1,takes on all the positions on the line frepto v,, and only
those.

a). b).

A

V2 A

a(vo-vq)
V3

2V

——.3v3

»
>

\

\
.Svo

Figure 4.8. The set of vectors representable by convex combinations.

Figure 4.8b shows the set of all convex combinations of three vectorsseCiven parameters and g,
both lying between 0 and 1, and form the following linear combination:

g=a v, +a,v,+(1l-a-a,)v, (4.8)

where we also insist thaf plusa, does not exceed one. This is a convex combination, since none of the
coefficients is ever negative and they sum to one. Figure 4.9 shewsree position vectovs = (2, 6),v, =

(3, 3), andv, = (7, 4). By the proper choices af anda,, any vector lying within the shaded triangle of
vectors can be represented, and no vectors outside this triangle cachleel réae vectdo = .2v, + .5v, +
.3V, for instance, is shown explicitly as the vector sum of the three weightediignggs. (Note how it is

built up out of “portions” of the three constituent vectors.) So thefsdt convex combinations of these
three vectors “spans” the shaded triangle. The proof of this is requested ierttisesx

If a,= 0, any vector in the link that joinsv, andv, can be “reached” by the proper choiceapfFor
example, the vector that is 20 percent of the way frptov, alongL is given by .8/, + Ov, +.2v,.

4.2.3. The Magnitude of a vector, and unit vectors.
If a vectorw is represented by thetuple (v, w,, . . . ,wp), how might its magnitude (equivalently, its

lengthor size be defined and computed? We denote the magnitudg byndl define it as the distance from
its tail to its head. Based on the Pythagorean theorem, this becomes

W] = W2 + w2+ w2 (4.9)

For example, the magnitudewf= (4, -2) ism, and that ofv = (1, -3, 2) isv14 . A vector of zero
length is denoted & Note that ifw is the vector from poinA to pointB, then | will be the distance from
Ato B (why?).

It is often useful to scale a vector so that the result has dleqgal to one. This is callesrmalizing a
vector, and the result is known asrat vector. For example, we form the normalized versiom,afenoted

a, by scaling it with the value 3|

Hill - Chapter 4 09/23/99 page 7



a
a=— (4.10)

£

Clearly this is a unit vectod:él =1 (why?), having the same directionaag&or example, it = (3, -4), then
|a|=5 and the normalized versima = (£,%). At times we refer to a unit vector asligection. Note

that any vector can be written as its magnitude times its directianisithe normalized version af vector
amay always be writtea =| a| a

Practice Exercises.

4.2.1. Representing Vectors as linear combinationgVith reference to Figure 4.9, what values, or range of
values, for aand g create the following sets?

a.v,.

b. The line joiningy, andv,,.

c. The vector midway between andv..

d. The centroid of the triangle.

4.2.2. The set of all convex combinationShow that the set of all convex combinations of three veetpvs,

andyv, is the set of vectors whose tips lie in the “triangle” formed by the tips of tbe ectors. Hint: Each
point in the triangle is a combination ¥f and some point lying betwe&pandVs.

4.2.3. Factoring out a scalar.Show how scaling a vectorby a scalas changes its length. That is, show that:
|sv|=]s]|V¥]|.Note the dual use of the magnitude symbol | |, once for a scalar andraneedtor.

4.2.4. Normalizing Vectors Normalize each of the following vectors:

a). (1, -2, .5); b). (8, 6); ¢). (4, 3)

4.3. The Dot Product.

There are two other powerful tools that facilitate working with vectibre dot (or inner) product, and the
cross product. The dot product produces a scalar; the cross producbwigris three dimensional vectors
and produces another vector. In this section we review the basictigepéthe dot product, principally to
develop the notion of perpendicularity. We then work with the dmlyrt to solve a number of important
geometric problems in graphics. Then the cross product is introduced eahtt selve a number of 3D
geometric problems.

Thedot product of two vectors is simple to define and compute. For two-dimensioo&rseg,, a,) and
(b, b,), it is simply the scalar whose valueib, + a,b,. Thus to calculate it, multiply corresponding

components of the two vectors, and add the results. For example, thedimt wf (3, 4) and (1, 6) is 27,
and that of (2, 3) and (9, -6) is 0.

The definition of the dot product generalizes easily tiimensions:

Definition: The Dot Product
The dot productl of two n-dimensional vectorsy = (v, v,, . .. ,v.) andw = (w;, w,, . . . ,w ) is denoted as

1 72
v -w and has the value

3

d=vxv =g vw (4.11)
i=1

Example 4.3.1:

» The dot product of (2, 3, 1) and (0, 4, -1) is 11.
°(2,2,2,2)-(4,1,2,1.1)=16.2.
*(1,0,2,0,1)-(0,1,0,1,0)=0.

* (169, 0, 43) (0, 375.3,0) = 0.

Hill - Chapter 4 09/23/99 page 8



4.3.1. Properties of the Dot Product
The dot product exhibits four major properties that we frequengiipigxand that follow easily (see the
exercises) from its basic definition:

1. Symmetry: a-b=b-a

2: Linearity: @+c-b=a-b+cb
3- Homogeneity: @ -b=s@-b)

4. b2=b-b

The first states that the order in which the two vectors are combined doeattest the dot product is
commutative. The next two proclaim that the dot produdinsar; that is, the dot product of a sum of
vectors can be expressed as the sum of the individual dot products, and scalingscakss the value of
the dot product. The last property is also useful, as it assertakhmg the dot product of a vector with itself

yields thesquare of the lengthof the vector. It appears frequently in the fohirH \/b-b .

The following manipulations show how these properties can be usidpidysan expression involving dot
products. The result itself will be used in the next section.

Example 4.3.2: Simplification of |a - b?f
Simplify the expression for the length (squared) of the difference oféatons,a andb, to obtain the
following relation:

la-bP=|al-2a-b+|bJ] (4.12)

The derivation proceeds as follows: Give the n&te the expressiong|- b |2. By the fourth propertyC is
the dot product:

C=|a-bP=(a-b)-(a-bh).

Using linearity:C=a- (@-b)-b - (@- b).

Using symmetry and linearity to simplify this furth&@=a-a-2a-b+b -b.

Using the fourth property above to obtélr- |a |2 -2a-b+|b |2 gives the desired result.

By replacing the minus with a plus in this relation, the following sinaifed useful relation emerges:
la+bP=|aP+2a-b+|b]| (4.13)

4.3.2. The Angle Between Two Vectors.

The most important application of the dot product is in finding tiytesbetween two vectors, or between
two intersecting lines. Figure 4.9 shows the 2D case, where vbaod lie at angle$ p, andj ¢,
relativeto thex-axis. Now from elementary trigonometry:

AY

fc

fp Re

Figure 4.9. Finding the angle between two vectors.

Hill - Chapter 4 09/23/99 page 9



b= (bl cosj p, bl sinj p)
¢=(kl cosj ¢, [l sinj ¢).

Thus their dot product is

b>c 4bf[c|cog . cps, +H Kl Jsin,j sin

=bf/cicos( . )

so we have, for any two vectdssaandc:

b -c =l | cos) (4.14)

whereq is the angle fronb toc. Thusb - ¢ varies as the cosine of the angle frioto c. The same result
holds for vectors of three, four, or any number of dimensions.

To obtain a slightly more compact form, divide through both siddy iy &ind use the unit vector notation
b =b /bl to obtain

cos(@) =b>¢ (4.15)

This is the desired result: The cosine of the angle between two vieetodg is the dot product of their
normalized versions.

Example 4.3.3Find the angle betwedn= (3, 4) anct = (5, 2).
Solution: Form b| = 5 andd| = 5.385 so thdd = (3/5,4/5) anc = (.9285, .3714). The dot product

b xc = .85422 = cosf), so thaig = 31.328. This can be checked by plotting the two vectors on graph paper
and measuring the angle between them.

4.3.3. The Sign of b-c, and Perpendicularity.

Recall that cosy) is positive if |g| is less than 39 zeroiif |g| equals 99, andnegativeif |g| exceeds 90
Because the dot product of two vectors is proportional to theecosihe angle between them, we can
therefore observe immediately that two vectors (of any nonzero |largth)

less than 9P apart ifb-c>0;
exactly 9® apart ifb - c=0; (4.16)
more than 9P apart ifb - c<0;

This is indicated by Figure 4.10. The sign of the dot product is usedrig atgorithmic tests.
b
b

c Cc

bec>0 bec=0 bec<O
Figure 4.10. The sign of the dot product.

The case in which the vectors ar®@part, operpendicular, is of special importance.

Definition:
Vectorsb andc are perpendicular i - c= 0.
(4.17)

Hill - Chapter 4 09/23/99 page 10



Other names for “perpendicular” asghogonal andnormal, and we shall use all three interchangeably.

The most familiar examples of orthogonal vectors are those aimed alongshef 20 and 3D coordinate
systems, as shown in Figure 4.11. In part a) the 2D vectors (1, 0),d)caf® mutually perpendicular unit
vectors. The 3D versions are so commonly used they are called the rgtanil&ectors” and are given
namesq, j, andk.

a). b).

y
T(O.l)

(1,0)

o
3 /

z

Figure 4.11. The standard unit vectors.

Definition:
Thestandard unit vectorsin 3D have components:
i=(1,0,0), i=(0,1,0), ankl= (0, O, 1). (4.18)

Part b) of the figure shows them for a right-handed system, and)siows them for a left-handed
system. Note thdt always points in the positive z direction.

Using these definitions any 3D vector suchab,(c) can be written in the alternative form:
(a,b,c)=ai+bj+ck (4.19)

Example 4.3.4 Notice thatv = (2, 5, -1) is clearly the same as 2 (1, 0, 0) + 5 (0, 1, 0) -1 (O, O,ith ish
recognized as 2+ 5j -k.

This form presents a vector as a sum of separate elementary component sedaisplifies various
pencil-and-paper calculations. It is particularly convenient wdeading with the cross product, discussed in
Section 4.4.

Practice Exercises.

4.3.1. Alternate proof of b - ¢ = |b| |c| cag Note thatb andc form two sides of a triangle, and the third
side isb - ¢. Use the law of cosines to obtain the square of the length ©fn terms of the lengths dfand
c and the cosine @f. Compare this with Equation 4.13 to obtain the desired result.

4.3.2. Find the Angle Calculate the angle between the vectors (2, 3) and (-3, 1), and check the result
visually using graph paper. Then compute the angle between the®bsvd, 3, -2) and (3, 3, 1).

4.3.3. Testing for Perpendicularity. Which pairs of the following vectors are perpendicular to one another
(3,4,1),(2,1,1),(3,-4,1),(0,0,0), (1, -2, 0), (4, 4, 4), (G4)1and (2, 2, 1)?

4.3.4. Pythagorean TheoremRefer to Equations 4.12 and 4.13. For the case in vehicidb are
perpendicular, these expressions have the same value, which seemsno sei®e geometrically. Show
that it works all right, and relate the result to the Pythagoresmdm.

4.3.4. The 2D “Perp” Vector.

Hill - Chapter 4 09/23/99 page 11



Suppose the 2D vectarhas componentsy, ay). What vectors are perpendicular to it? One way to obtain
such a vector is to interchange th@ndy- components and negate one of tieietb = (-ay, ax). Then

the dot producé - b equals 0 sa andb are indeed perpendicular. For instance,3f(4,7) therb = (-7, 4)
is a vector normal te. There are infinitely many vectors normal to angince any scalar multiple bf
such ag-21, 12) and (7, -4) is also normalao(Sketch several of them for a givan

It is convenient to have a symbol for queaticular vector that is normal to a given 2D vectoiWe use
the symbol” (pronounced “perp”) for this.

Definition:  Givena = (&, ay), a” = (-ay, &) is thecounterclockwise
(4.20)
perpendicular toa.

Note thataanda” have the same lengtha| E h'\l . Figure 4.12a shows an arbitrary vectend the
resultinga'\ . Note that moving from tha direction to directiora” requires a left turn. (Making a right

turn is equivalent to turning in the directiam’- )
2). B).

Figure 4.12. The vecta” perpendicular ta.

We show in the next section how this notation can be put to goodigsee B.12b shows that in three
dimensions no single vector lies in “the” direction perpendiculardiven 3D vectog, since any of the
vectors lying in the plane perpendiculaatwill do. However, the cross product developed later will
provide a simple tool for dealing with such vectors.

Practice Exercises.

4.3.5. Some Pleasant Properties of alt is useful in some discussions to view the “perp” syrﬁ\bak an
operator that performs a “rotate 90° left” operation on its argumeﬂtasa)'\ is the vector produced by
applying the” to vectora, much as\/;( is the value produced by applying the square root operator to
Viewing  in this way, show that it enjoys the following properties:

a). Linearity: & + b)A =a" +b" and (Aa)'\ =Aa for any scalad,

b). a’ = (aA )A =-a (two perp’s make a reversal)

4.3.6. The “perp dot” product. Interesting things happen when we dot the “perp” of a vector with@moth

vector, as irg - b. We call this the “perp dot product” [hill95]. Use the basic definitioa ofibove to
show:

a b= axh/ - aybx (value of the perp dot product)

N A .

. a a=0, @ is perpendicular ta)

. |aA |2 = |a|2. (aA anda have the same length) (4.22)
N N . .

. a - -b=-b -a (antisymmetric)

3 This is equivalent to the familiar fact that perpendicular Il slopes that are negative reciprocals of one another.
In Chapter 5 we see the “interchange and negate” operation ariselpaturahnection with a rotation of 90 degrees.

Hill - Chapter 4 09/23/99 page 12



The fourth fact shows that the perp dot product is “antisymmetric”:rlgdbie'\ from one vector to the
other reverses the sign of the dot product. Other useful properthes péip dot product will be discussed
as they are needed.

4.3.7. Calculate one.Computea - b anda’ - bfora= (3,4) ancb = (2,1).

4.3.8. It's a determinant.Show that” - b can be written as the determinant (for definitions of matrices
and determinants see Appendix 2):

a b= %%
b, b,

4.3.9. Other goodies.

a). Show thatd" b)2 + (a-b)2 = ja2b|2.

|b). Showthatib+b+c=0thena” -b=b" -c=¢c”" -a

4.3.5. Orthogonal Projections, and the Distance from a Point to a Line.

Three geometric problems arise frequently in graphics applicapionjscting a vector onto a given
vector,resolving a vector into its components in one direction and another, and findinptiwece
between a point and a line. All three problems are simplified if we use the paspamdtthe perp dot
product.

Figure 4.13a shows the basic ingredients. We are given two poamdC, and a vectov. These questions arise:
a). b). c).

G

Figure 4.13. Resolving a vector into two orthogonal vectors.

a). How far is the poin€ from the linel that passes throughin the directiornv?
b). If we drop a perpendicular froBiontoL, where does it hit?
¢). How do we decompose the veatar C - A into a part along the lineand a part perpendicular t@

Figure 4.13.b defines some additional quantifvésis the vectow rotated 90 degrees CCW. Dropping a
perpendicular fron€ onto lineL we say that the vectaris resolvedinto the portiorKv alongv and the

portionM v perpendicular tg, whereK andM are some constants to be determined. Then we have

c=Kv+MV" (4.22)

Givenc andv we want to solve foK andM. Once found, we say that tbghogonal projection of c onto
v is Kv, and that the distance from C to the line is/]M

Figure 4.13c shows a situation where these questions might arise. We ansthyize how the gravitational
force vectorG acts on the block to pull it down the incline. To do this we mustve§ into the force-
acting along the incline and the fof8eacting perpendicular to the incline. That is, flhdndB such that
G=F+B.

Equation 4.22 is really two equations: the left and right hand sidsesagree for the-components and

they also must agree for thecomponents. There are two unknowhandM. So we have two equations
in two unknowns, and Cramer’s rule can be applied. But whomézeres Cramer’s rule? We use a trick

Hill - Chapter 4 09/23/99 page 13



here that is easy to remember and immediately reveals the solution.uivialeut to Cramer’s rule, but
simpler to apply.

The trick in solving two equations in two unknowns is to eliminate onesofdhiables. We do this by
forming the dot product of both sides with the vestor

cv=Kvv + MV v (4.23)

Happily, the termy” -v vanishes, (why?), yielding immediately:

oW

K .
VXV

Similarly “dot” both sides of Equation 4.3.12 with to obtain M:

N

cxv
V X

M=

where we have used the third property in Equation 4.21. Putting these togethgewe ha

o) " XCH _
c= ea/ v+ ;@3/ v (resolvingc intov andv”) (4.24)
dvia’ Evfo

This equality holds for any vectocsaandv. The part alongy is known as therthogonal projection of ¢
onto the vectow. The second term gives the “difference term” explicitly and compactlyizésssthe
distance from C to the line:

"

VI

Vi xc .,
distance \
TIvE

(Check that the second form really equals the first). Referring tod-#y13b we can sathe distance
from a point C to the line through A in the directiorv is:

V' XC- A)

distance = (4.25)

V|

Example 4.3.5Find the orthogonal projection of the veator (6, 4) ontaa = (1, 2). (Sketch the relevant
vectors.)Solution: Evaluate the first term in Equation 4.24, obtaining the vector 4,2

Example 4.3.6:How far is the poin€ = (6,4) from the line that passes through (1,1) and (&8)&ion:
SetA=(1, 1), user = (4, 9) - (1, 1) = (3, 8), and evalualistancein Equation 4.25. The result is:

d=31/J73.

Practice Exercises.

4.3.10. Resolve it.Express vectog = (4, 7) as a linear combinationlof= (3, 5) and” . How far is 4,2

+ g from the line through (4, 2) that moves in the directi@n

4.3.11. A Block pulled down an inclineA block rests on an incline tilted 30° from the horizontal. Gravity
exerts a force of one newton on the block. What is the force thagireg'tito move the block along the
incline?

4.3.12. How far is it?How far from the line through (2, 5) and ( 4, -1) does the point (6, 11Tke®k your
result on graph paper.

Hill - Chapter 4 09/23/99 page 14



4.3.6. Applications of Projection: Reflections.

To display the reflection of light from a mirror, or the behaviopithfard balls bouncing off one another,
we need to find the direction that an object takes upon being reflected at sgifaze. In a case study at
the end of this chapter we describe an application to trace a ray aidighiounces around inside a
reflective chamber, or a billiard ball as it bounces around a pool tabdachtbounce a reflection is made
to a new direction, as derived in this section.

When light reflects from a mirror we know that the angle of reflaatioist equal the angle of incidence.
We next show how to use vectors and projections to compute this new dirédétiaan think in terms of
two-dimensional vectors for simplicity, but because the derivationrduiesxplicitly state the dimension of
the vectors involved, the same result applies in three dimensiargdlémtions from a surface.

Figure 4.14a shows a ray having directpmitting lineL, and reflecting in (as yet unknown) directian
The vectom is perpendicular to the line. Anglg in the figure must equal anglp. How isr related taa
andn? Figure 4.14b showsresolved into the portiom alongn and the portiom orthogonal tan.
Because of symmetry,has the same componentrthogonal tan, but the opposite component alamg
and sa =e-m. Because =a - m, this gives =a - 2m. Nowm is the orthogonal projection afonton,
so by Equation 4.2¢ is

a). b).
AN

41192

77 77 L

4.14. Reflection of a ray from a surface.

ax AL~
m = n=(ax)n (4.26)

2

In|
(recall N is the unit length version of) and so we obtain the result

r=a-2@ ><ﬁ)ﬁ (direction of the reflected ray) (4.27)

In three dimensions physics demands that the reflected direatioist lie in the plane defined byanda.
The expression far above indeed supports this, as we show in Chapter five.

| Example 4.3.7 Leta = (4, -2) anch = (0, 3). Then Equation 4.27 yields: (4, 2), as expected. Both the
|ang|e of incidence and reflection are equal tOJ@).

Practice Exercises.

4.3.13. Find the Reflected Direction.Fora= (2, 3) anch = (-2, 1), find the direction of the reflection.
4.3.14. Lengths of the Incident and Reflected VectordJsing Equation 4.27 and properties of the dot
product, show that | = f.

4.4. The Cross Product of Two Vectors.
Thecross product(also called theector product) of two vectors is another vector. It has many useful
properties, but the one we use most often is that it is perpendiztiath of the given vectors. The cross
product is defined only for three-dimensional vectors.

Hill - Chapter 4 09/23/99 page 15



Given the 3D vectora = (ax, ay, az) andb = (bx, by, bz), their cross product is denotedas b. Itis
defined in terms of the standard unit vecigjsandk (see Equation 4.18) by

Definition of a” b:
a’ b= (aybz - a-zby)i + (asz - axbz)J + (axby - aybx)k (4-28)

(It can actually be derived from more fundamental principles: See thesee)ds this form is rather
difficult to remember, it is often written as an easily remembered detemnfgenAppendix 2 for a review
of determinants).

j
a’b=la a,
b, b,

(4.29)

oo x

Z|
Remembering how to form the cross product thus requires emgmbering how to form a determinant.

Example 4.4.1.Fora= (3, 0, 2) and = (4, 1, 8), direct calculation shows that b = -2 -16 + 3k. What
isb” a?

From this definition one can easily show the following algebraiceptigs of the cross product:

imj=k
1. j k=i
kK™ i=j
2.a" b=-b" a (antisymmetry)
3.a" (b+c)=a" b+a’c (linearity) (4.30)
4.(sa)” b=s(a” b) (homogeneity)

These equations are true in both left-handed and right-handed coeisyistms. Note the logical
(alphabetical) ordering of ingredients in the equationj = K , which also provides a handy mnemonic
device for remembering the direction of cross products.

Practice Exercises.

4.4.1. Demonstrate the Four Propertie?rove each of the preceding four properties given for the cross
product.

4.4.2. Derivation of the Cross ProductThe form in Equation 4.28, presented as a definition, can actually
be derived from more fundamental ideas. We need only assume that:

a. The cross product operation is linear.

b. The cross product of a vector with itself is 0.

c.i” j=k,] " k=i,andk” i=]j.

By writing a=ax i +ayj +azk andb = by i + by j + bz k, apply these rules to derive the proper form for
a’ b.

4.4.3.1sa” b perpendicular to a? Show that the cross product of vectarandb is indeed

perpendicular ta.

4.4.4. Vector Products Find the vectob = (bx, by, bz) that satisfies the cross product relation b =c,
wherea= (2, 1, 3) and = (2, -4, 0). Is there only one such vector?

Hill - Chapter 4 09/23/99 page 16



4.4.5. Nonassociativity of the Cross ProducShow that the cross product is not associative. That is, that
a’ (b’ c) is not necessarily the same(as” b)” c.

4.4.6. Another Useful FactShow by direct calculation on the components that the length of the cross
product has the form:

la” bl = yld?bl® - (axb)?

4.4.1. Geometric Interpretation of the Cross Product.

By definition the cross produet” b of two vectors is another vector, but how is it related geoméyricethe
others, and why is it of interest? Figure 4.15 gives the answercrdse produca” b has the following useful
properties (whose proofs are requested in the exercises):

Area=1Ja" b]|

Figure 4.15. Interpretation of the cross product.

1.a” bis perpendicular (orthogonal) to battandb.

2. The length o~ b equals the area of the parallelogram determinedandb. This area is equal to
la” bl=|al|b]sin (@) (4.31)

whereq is the angle betweemandb, measured from tob or b to a, whichever produces an angle less than 180

degrees. As a special case, b = 0 if, and only ifa andb have the same or opposite directions or if either has
zero length. What is the magnitude of the cross prodaaiifdb are perpendicular?

3. The sense ai ~ b is given by the right-hand rule when working in a right-handed sy$temexample,
twist the fingers of your right hand froato b, and thera~ b will point in the direction of your thumb. (When
working in a left-handed system, use your left hand instead.) Natte'th = k supports this.

Example 4.4.2Leta= (1, 0, 1) and = (1, O, 0). These vectors are easy to visualize, as they both liexizthe
plane. (Sketch them.) The area of the parallelogram definadhbglb is easily seen to be 1. Becawe b is
orthogonal to botla andb, we expect it to be parallel to tireaxis and hence be proportional fo i either a
right-handed or a left-handed system, sweeping the fingers of thepdpf@dand frona to b reveals a thumb
pointed along the positiveaxis. Direct calculation based on Equation 4.28 confirms all ofahisb =j.

| Practice Exercise 4.4.7. Proving the Propertie®rove the three properties given above for the cross product.

4.4.2. Finding the Normal to a Plane.

As we shall see in the next section, we sometimes must compute the eatspaiithe normal vectorto a

plane.

If the plane is known to pass through three specific points, tee product provides the tool to accomplish this.

Any three pointsP1, P2, P3, determine a unique plane, as long as the points don't lie in ghstiae. Figure
4.16 shows this situation.

Hill - Chapter 4 09/23/99 page 17



axb
Figure 4.16. Finding the plane through three given points.

To find the normal vector, build two vectoes= P2 - P1 andb =P3 - P1. Their cross produch=a” b,
must be normal to bothandb, so it is normal to every line in the plane (why?). It is thereforedhigat!
normal vector. (What happens if the three points do lie in @istine?) Any scalar multiple of this cross
product is also a normal vector, includibg a, which points in the opposite direction.

Example 4.4.3 Find the normal vector to the plane that passes through this b 0, 2), (2, 3, 0), and (1, 2, 4).
Solution: By direct calculationa= (2, 3, 0) - (1,0, 2)=(1, 3, -2), abd (1, 2,4) - (1,0, 2)=(0, 2, 2), and so
their cross product = (10, -2, 2).

Note: Since a cross product involves the subtraction of various quangitieg€Efuation 4.28), this method for
finding n is vulnerable to numerical inaccuracies, especially when the angle betaedh is small. We
develop a more robust method later for finding normal vectors iniggact

Practice Exercises.
4.4.8. Does the choice of points matter®s the same plane obtained as in Example 4.4.3 if we use the points in
a different order, sap= (1, 0, 2) - (2, 3,0) and= (1, 2, 4) - (2, 3, 0)? Show that the same plane does result.
4.4.9. Finding Some Planes:or each of the following triplets of points, find the normal eetd the plane (if it
exists) that passes through the triplet.

aP=(111)pP,=(,2 1P, =@3,0,4)

b.P,=(8,9,7)P,=(-8, -9, -)P,=(1,2,1)

c.P,=(,3, -4P,=(0,0,0),P,=(2,1, -1)

d.P,=(0,0,00P,=(1,1,1)P,=(2 2, 2).

4.4.10. Finding the normal vectorsCalculate the normal vectors to each of the faces of the two objects shown
in Figure 4.17. The cube has vertices (+1,+1,+1) and ttahtstron has vertices (0,0,0), (0,0,1), (1,0,0), and
(0,1,0).

a). b).

N
' I

Figure 4.17. Finding the normal vectors to faces.

4.5. Representations of Key Geometric Objects.
In the preceding sections we have discussed some basic ideas of vettbesrapplication to important
geometric problems that arise in graphics. Now we develop the fundandestathat facilitate working

Hill - Chapter 4 09/23/99 page 18



with lines and planes, which are central to graphics, and whosetdirass” and “flatness” makes them
easy to represent and manipulate.

What does it mean to “represent” a line or plane, and why is it importanta&his ¢p come up with a
formula or equation that distinguishes points that lie on the line frose tihat don’t. This might be an
equation that is satisfied by all points on the line, and only thaeesp®r it might be a function that returns
different points in the line as some parameter is varied. Thesesiation allows one to test such things as:
is pointP on the line?, or where does the lintersectanother line or some other object. Very importantly, a
line lying in a plane divides the plane into two parts, and we ofted to ask whether poiRtlies on one

side or the other of the line.

In order to deal properly with lines and planes we must, somewhatagatealy, go back to basics and
review how points and vectors differ, and how each is representede®hd for this arises because, to
represent a line or plane we must “add points together”, and “scale’ poperations that for points are
nonsensical. To see what is really going on we introduce the notion oftineterframe, that makes clear
the significant difference between a point and a vector, and reveals in what setegitimate to “add
points”. The use of coordinate frames leads ultimately to the notion of “lesreogs coordinates”, which
is a central tool in computer graphics, and greatly simplifies manyithlgs. We will make explicit use of
coordinate frames in only a few places in the book, most notably @lfenging coordinate systems and
“flying” cameras around a scene (see Chapters 5, 6, éh@a) even when not explicitly mentioned, an
underlying coordinate frame will be present in every situation.

4.5.1. Coordinate Systems and Coordinate Frames.
One doesn't discover new lands without consenting
to lose sight of the shore for a very long time.
Andre Gide

When discussing vectors in previous sections we say, for instanca vibabrv = (3, 2, 7), meaning it is a
certain 3-tuple. We say the same for a point, as in poin(5, 3, 1). This makes it seem that points and
vectors are the same thing. But points and vectors are very different creatimsshaee location but no
size or direction; vectors have size and direction but no location.

What we mean by = (3, 2, 7), of course, is that the vectdnas “components” (3, 2, 7) in the underlying
coordinate system. Similarl, = (5, 3, 1) means poifit has coordinates (5, 3, 1) in the underlying
coordinate system. Normally this confusion between the object amgiesentation presents no problem.
The problem arises when there is more than one coordinate system (a very commrenazaugraphics),
and when you transform points or vectors from one system into another.

We usually think of a coordinate system as three “axes” emanating frongem asiin Figure 4.2b. But in
fact a coordinate system is “located” somewhere in “the world”, andétsare best described by three
vectors that point in mutually perpendicular directions. Ini@aer it is important to make explicit the
“location” of the coordinate system. So we extend the notion of a 3D catedipsternto that of a 3D
coordinate “frame.” Acoordinate frame consists of a specific poind, , called theorigin, and three
mutually perpendicular unit vects, b, andc. Figure 4.18 shows a coordinate frame “residing” at some

pointJ within “the world”, with its vectors, b, andc drawn so they appear to emanate fidntike axes.

4 This is an area where graphics programmers can easily go astray: their programs produce pictures that losiknplé fo
situations, and become mysteriously and glaringly wrong when things get more complex.

5 The ideas for a 2D system are essentially identical.

6 n more general contexts the vectors need not be mutually perpendicular, but rather only “lidepapdent” (such that,ughly,
none of them is a linear combination of the other two). The coordinate frames we worklvativays have perpendicular axis
vectors.

Hill - Chapter 4 09/23/99 page 19



Figure 4.18. A coordinate frame positioned in “the world”.

Now to represent a vectarwe find three numbersy;( v, V3) such that

v=via+v,b+vsc (4.32)
and say that “has the representationVy( v, va) in this system.

On the other hand, to represent a pdhtye view its location as an offset from the origin by a certain
amount: we represent the veckdr J by finding three numbergy, p,, ps) such that:

P-J =pia+pb+psc
and then equivalently write itself as:
P=J +pa+pb+psc (4.33)

The representation &fis not just a 3-tuple, but a 3-tuple along with an oriBiis “at” a location that is
offset from the origin by,a + p,b + psc. The basic idea is to make the origin of the coordinate system
explicit This becomes important only when there is more than one coordinage &adwhen transforming
one frame into another.

Note that when we earlier defined the standard unit vetprandk as (1, 0, 0), (0, 1, 0), and (0, 0, 1),
respectively, we were actually defining thiipresentationé an underlying coordinate frame. Since by
Equation 4.32 = 1a + Ob + Qc, vectori is actually just itself! It's a matter of naming: whether you are
talking about the vector or about its representation in a coordinate. fvienusually don’t bother to
distinguish them.

Note that you can’t explicitly say whedk is, or cite the directions af b, andc: To do so requires having

some other coordinate frame in which to represent this onenis tdtits own coordinate framd, has the
representation (0, 0, ®,has the representation (1, 0, 0), etc.

The homogeneous representation of a point and a vector.

It is useful to represent both points and vectors usingaimeset of basic underlying objects, b, c, J ).
From Equations 4.32 and 4.33 the vesterv,a +V, b +v; c then needs the four coefficients, (v, vs, 0)
whereas the poir® = p,a + p,b + psc +J needs the four coefficientpy(p,, ps, 1). The fourth component
designates whether the object does or does not indudiée can formally write any andP using a matrix
multiplication (multiplying a row vector by a column vector - see Appengix 2

Hill - Chapter 4 09/23/99 page 20



Vi

v=(abcJ) (4.38)
V3
0
P

P=(ab,cJ) Pz (4.35)
3
1

Here the row matrix captures the nature of the coordinate frame, and the celiorceaptures the
representation of the specific object of interest. Thus vectors and pairgglifferent representations: there
is a fourth component of O for a vector and 1 for a point. This is often callbdrieeneous
representation’ The use of homogeneous coordinates is one of the hallmarks of cogayigics, as it
helps to keep straight the distinction between points and vectors, andiegrawcompact notation when
working with affine transformations. It pays off in a computegpam to represent the points and vectors of

interest in homogeneous coordinates as 4-tuples, by appending & Toists particularly true when we
must convert between one coordinate frame and another in which points amd aeetrepresented.

It is simple to convert between the “ordinary” representation of & poiector (a 3-tuple for 3D objects or
a 2-tuple for 2D objects) and the homogeneous form:

To go from ordinary to homogeneous coordinates:

if it's a point append a 1;
if it's a vector, append a 0;

To go from homogeneous coordinates to ordinary coordinates:

If it's a vector its final coordinate is 0. Delete the 0.
If it's a point its final coordinate is 1 Delete the 1.

OpenGL uses 4D homogeneous coordinates for all its verticesl Heyal it a 3-tuple in the form, {y, 2), it
converts it immediately to«(y, z, 1). If you send it a 2D poink(y), it first appends a 0 for the z-component
and then a 1, to fornx(y, 0, 1). All computations are done within OpenGL in 4D homogeneous
coordinates.

Linear Combinations of Vectors .
Note how nicely some things work out in homogeneous coordinaess wé combine vectors coordinate-
wise: all the definitions and manipulations are consistent:

* The difference of two points,(y, z, 1) and (U, v, w, 1) is (x-u,y - v, z-w, 0), which is, as expected, a
vector.

» The sum of a poin(y, z 1) and a vectord( e, f, 0)is k+d,y +e, z+f, 1), another point;

» Two vectors can be added; ¢, f, 0) + (m,n,r, 0) = @+ m e+n, f+r, 0) which produces another vector;
« It is meaningful to scale a vector:d3¢, f, 0) = (3, 3¢, 3, 0);

7 Actually we are only going part of the way in this discussion. As we see in Chapter 7 when studgttippspjhromogeneous
coordinates in that context permit an additional operation, which makesthly “homogeneous”. Until we examine projectidhis
operation need not be introduced.

81n the 2D case, points are 3-tupleg fp 1) and vectors are 3-tuples,(v,, 0).

Hill - Chapter 4 09/23/99 page 21



« It is meaningful to fornanylinear combination of vectors. Let the vectors/e(v; , W, V3, 0) andw =
(w1, Wy, Ws, 0). Then using arbitrary scalars a and b, we form v = (av + bwi, aw + bws, aw + bw, 0),
which is a legitimate vector.

Forming a linear combination of vectors is well defined, but does iersafse for points? The answer is no,
except in one special case, as we explore next.

4.5.2. Affine Combinations of Points.
Consider forming a linear combination of two poifs; (P1, P,, P3,1) andR = (Ry, Ry, Rs, 1) , using the
scalard andg:

fP + gR: (fpl + gRl: sz + ng, fP3 + gR3, f+ g)

We know this is a legitimate vectorfif- g = 0 (why?). But we shall see that inista legitimate point
unlessf +g = 1! Recall from Equation 4.2 that when the coefficients of a lineabmation sum to 1 it is
called an “affine” combination. So we see that the only linear combinattipoints that is legitimate is an
affine combination. Thus, for example, the objecPGt3.7R is a legitimate point, as are P.71. /R and
the midpoint 0.2 + 0.3R, butP + Ris not a point. For three poin®, R, andQ we can form the legal point
0.3P+ 0.R- 0.2, but notP + Q -0.9R..

Fact: any affine combination of points is a legitimate point.

But what's wrong geometrically with formirany linear combination of two points, say
E=fP+gR (4.36)
whenf + g is different from 1? The problem arises if we shift the origin of the aumtel system

[Goldman85]. Suppose the origin is shifted by veatao thatP is altered td® + u andR is shifted taR +
u. If E is a legitimate point, it too must be shifted to the new @8intE + u. But instead we have

E=fP+gR+ (f+gu
which isnotE + u unless +g = 1.

The failure of a simple sui®, + P, of two points to be a true point is shown in Figure 4.19. P&nésndP,
are shown represented in two coordinate systems, one offset fasthdr. Viewing each point as the head
of a vector bound to its origin, we see that the Bym P, yields two different points in the two systems.
ThereforeP; + P, depends on the choice of coordinate system. Note, by way of cotitaashe affine
combination 0.9¢; + P,) doesnotdepend on this choice.

o P1
-7
-y
—~ depends on
A System 2 s % system
== N
= /NP4 Py)
A Pe=” e e
System 1 7\ 7,7
N 0/
/
S N PPy
/
S e F1
/ /////// >
/ -~ g
// ///
/ -7
-~

Figure 4.19. Adding poi;ns is not legal.

A Point plus a Vector is an Affine Combination of Points.

Hill - Chapter 4

09/23/99

page 22



There is another way of examining affine sums of points that is stitggeon its own, and also leads to a
useful tool in graphics. It doesn’t require the use of homogeneoudirtaies.

Consider forming a point as a pofkbffset by a vectov that has been scaled by scalak + tv. This is the
sum of a point and a vector so it is a legitimate point. If we take ag vette difference between some
other pointB andA: v = B - A then we have the poiRt

P=A+tB-A) (4.37)
which is also a legitimate point. But now rewrite it algebraically as:
P=tB+ (1-tA (4.38)

and it is seen to be an affine combination of points (why?). This furthiémiegs writing affine sums of
points. In fact, any affine sum of points can be written as a poistaplector (see the exercises). If you are
ever uncomfortable writing an affine sum of points as in Equati®® @ form we will use often), simply
understand that ineanghe point given by Equation 4.37.

Example 4.5.1: The centroid of a triangleConsider the triangl€ with verticesA, B, andC shown in
Figure 4.20. We use the ideas above to show that thentiediansof T meet at a point that lies 2/3 of the

way along each median. This is the centroid (center of gPaafyr.
E

G

centroid C

D
Figure 4.20. The centroid of a triangle as an affine combination.

By definition the median frorD is the line fronD to the midpoint of the opposite side. THais (E + F)/2.
We first ask where the point that is 2/3 of the way fidio G lies? Using the parametric form the desired
point must bed + (G - D)t with t = 2/3, which yields the affine combinati@given by

D+E+F

3
(Try itl) Here’s the cute part [pedoe70]. Since this resudymmetricain D, E, andF, it must also be 2/3 of
the way along the median frof and 2/3 of the way along the median frBrfHence the 3 medians meet
there, andC is the centroid.

C=

This result generalizes nicely for a regular polygohl sfdes: the centroid is simply the average ofthe
vertex locations, another affine combination. For an arbitrarygpalyhe formula is more complex

Practice Exercises.

4.5.1. Any affine combination of points is legitimateConsider three scalaasb, andc that sum to one,
and three point4, B, andC. The affine combinatiora A+ b B+c Cis a legal point because using1- a
- bitis seen to be the sameaaA+bB+ (1-a-b)C=C+a(A-C)+b(B-C), the sum of a point and
two vectors (check this out!). To generalize: Given the affine gwtibn of pointsmA; + WA, + ... +
WA, wherew; +w, + ... +w, = 1, show that it can be written as a point plus a vector, and ifottecae
legitimate point.

4.5.2. Shifting the coordinate systerflGoldman85]. Consider the general situation of forming a linear
combination oim points:

9The reference to gravity arises because if a thin plate is cut in theafiBphe plate hangs level if suspended by a
thread attached at the centroid. Gravity pulls equally on all sides cétiiid, so the plate is balanced.

Hill - Chapter 4 09/23/99 page 23



m

[o]
E=a aR

i=1
We ask wheth€eEE is a point, a vector, or nothing at all? By considering the effect oftarskedichP;j by u
show that is “shifted” toE’ = E + Su, whereSis the sum of the coefficients:

3
S=a a
i=1
Show that:

i). Eis a point ifS= 1.
ii). Eis a vector ifS= 0.
ii). Eis meaningless for other valuesSf

4.5.3. Linear Interpolation of two points.
The affine combination of points expressed in Equation 4.33:

P=A(l-t)+Bt

performslinear interpolation between the poin®s andB. That is, thex-componen®,(t)

provides a value that is fractidmf the way between the valdg andBX’ and similarly for the
y-component (and in 3D tteecomponent). This is a sufficiently important operation to warrant
a name, anterp() (for linear interpolation) has become popular. In one dsien lerp(a, b,

t) provides a number that is the fractiaof the way froma to b. Figure 4.21 provides a simple
implementation oferp().

float lerp(float a, float b, float t)
{

returna + (b - a) *t; // return a float

}

Figure 4.21. Linear interpolation effectedlbgp().

Similarly, one often wants to compute the pé¥(t) that is fractiort of the way along the
straight line from poinA to pointB. This point is often called the “tween” (for “in-between”)
att of pointsA andB. Each component of the resulting point is formed asetipe () of the
corresponding componentsAfandB. A procedure

Point2 canvas:: Tween(Point2 A, Point2 B, float t) I/ tween A and B
is easily written (how?) to implement tweening. A 3D version is almost the same

Example 4.5.2LetA= (4, 9) andB = (3, 7). ThenmTween( A B, t) returns the point (4t; 9 - 4), so
thatTween(A, B, 0.4) returns (3.6, 8.1). (Check this on graph paper.)

4.5.3. “Tweening” for Art and Animation.

Interesting animations can be created that show one figure beiegntd” into another. It's simplest if the
two figures are polylines (or families of polylines) based on éineesnumber of points. Suppose the first
figure, A, is based on the polyline with poirig, and the second polylinB, is based on poin®j, fori =

0, ...,n-1. We can form the polylin(t), called the “tween at, by forming the points:

Pi(t) = (1 -t) Aj+t B

If we look at a succession of values for t between 0 and 1t s&),0.1, 0.2, ..., 0.9, 1.0, we see that this
polyline begins with the shape Afand ends with the shapeRfbut in between it is a blend of the two

Hill - Chapter 4 09/23/99 page 24



shapes. For small values of t it looks likebut as t increases it warps (smoothly) towards a shape close to
B. Fort = 0.25, for instance, poij(.25) of the tween is 25% of the way fr@kio B.

Figure 4.22 shows a simple example, in which polyfres the shape of a house, and polyBirfeas the
shape of the letter ‘T". The poiRon the house corresponds to p&mn the ‘T’. The various tweens of
pointR on the house and poi§ton the T lie on the line betwe@&andS. The tween fot = 1/2 lies at the
midpoint of RS The in between polylines show the shapes of the tweehsf@;, 0.25, 0.5, 0.75, and 1.0.

[ EICAT

Figure 4.22. Tweening a "T" into a house.

Figure 4.23 showdrawTween( ), that draws a tween of two polylindsandB, each having vertices, at
the specified value af

void canvas:: drawTween(Point2 A[], Point2 B[], int n, float

Y
{ /I draw the tween at time t between polylines A and B
for(inti=0;i<n;i++)

{

Point2 P;

P = Tween(A[i], B[i],1);

if(i == 0) moveTo(P.x, P.y);

else lineTo(P.x, P.y);
}

}

Figure 4.23. Tweening two Polylines.

drawTween () could be used in an animation loop that twekasdB back and forth, first asincreases
from 0 to 1, then asdecreases back to 0, etc. Double buffering, as discussed in Chapter @ tesruake
the transition from one displayed tween to the next instantaneous.

for(t=0.0, delT =0.1; ; t += delT) // tween back and forth forever

{

<clear the buffer>

drawTween(A, B, n, t);

glutSwapBuffers();

if(t>= 1.0 || t <= 0.0) delT = - delT; // reverse the flow of t
}

Figure 4.24 shows an artistic use of this technique based ontsaaf pelylines. Three tweens are shown
(what values of are used?). Because the two sets of polylines are drawn sufficienthafgrtagre is
room to draw the tweens between them with no overlap, so that all five piétumriesl on one frame.

see Figure 7.11 from first edition
Figure 4.24. From man to woman. (Courtesy of Marc Infield.)

Susan E. Brennan of Hewlett Packard in Palo Alto, Californiaptaiiced caricatures of famous figures
using this method (see [dewdney88]). Figure 4.25 shows an example. Theasddourth faces are

based on digitized points for Elizabeth Taylor and John Bn&@y. The third face is a tween, and the other
three are based @xtrapolation. That is, values dflarger than 1 are used, so that the termt)1s-

negative. Extrapolation can produce caricature-like distortionspie sense “going to the other side” of
polyline B from polylineA. Values oft less than 0 may also be used, with a similar effect.

[see Figure 7.12 from 1st edition: Elizabeth Taylor to J.F. Kennedy |

Hill - Chapter 4 09/23/99 page 25



Figure 4.25. Face Caricature: Tweening and extrapolation. (Courtesyaof Brennan.)

Tweening is used in the film industry to reduce the cost of producing @msatich as cartoons. In earlier
days an artist had to draw 24 pictures for each second of film, leatenvies display 24 frames per
second. With the assistance of a computer, however, an artist neeghtirahe first and final pictures,
calledkey-frames in certain sequences and let the others be generated automaticahgtdae, if the
characters are not moving too rapidly in a certain one-half-secatidrpof a cartoon, the artist can draw
and digitize the first and final frames of this portion, and the ctengan create 10 tweens using linear
interpolation, thereby saving a great deal of the artist's time. See theuchsatdhe end of this chapter for
a programming project that produces these effects.

Practice Exercises.

4.5.3. A Limiting Case of TweeningWhat is the effect of tweening when all of the poifgtin polyline A
are the same? How is polyliBedistorted in its appearance in each tween?

4.5.4. An Extrapolation. PolylineA is a square with vertices (1, 1), (-1, 1), (-1, -1), (1, -1), and polBline
is a wedge with vertices (4, 3), (5, -2), (4, 0), (3, -2). Sketch (by)Hhadhapé(t) fort=-1, -0.5, 0.5,
and 1.5.

4.5.5. Extrapolation Versus Tweening.Suppose that five polyline pictures are displayed side by side.
From careful measurement you determine that the middle three are in-betwgren#rsf and the last, and
you calculate the values blised. But someone claims that the last is actually an extrapolation iosthe f
and the fourth. Is there any way to tell whether this is true? If it is aspekation, can the value blised

be determined? If so, what is it?

4.5.4. Preview: Quadratic and cubic tweening, and Bezier Curves.

In Chapter 8 we address the problem of designing complex shapesBeaiedcurves. It is interesting to
note here that the underlying idea is simply tweening between a calle€fimints. With linear
interpolation above we “partition unity” into the pieces {Landt, and use these pieces to “weight” the
pointsA andB. We can extend this to quadratic interpolation by partitioning unity limeetpeces. Just
rewrite 1 as

1= ((14) +1)2

and expand it to produce the three piecestxa, 2(1 -1 t, andt?. They obviously sum to one, so they can
be used to form the affine combination of poiat8, andC:

Pt) = (1-)2A+ 2(1-)B+tC

This is the “Bezier curve” for the poinfs B, andC. Figure 4.26a shows the shapé() ast varies from 0
to 1. It flows smoothly fronA to C. (Notice that the curve misses the middle point.) Going further, one can

expand ((1 %) +t )3 into four pieces (which ones?) which can be used to do “cubic interpdlagtween
four pointsA, B, C andD, as shown in Figure 4.26b.
a). b). B

B c

/

P(0) P(t) AZ—p(0) 5
P(1)
A

PA\C
Figure 4.26. Bezier curves as Tweening.

Hill - Chapter 4 09/23/99 page 26



Practice Exercise 4.5.6. Try it outDraw three point#, B, andC on a piece of graph paper. For each of
the values =0, .1, .2, ..., .9, 1 compute the positiofP@j in Equation 4.38, and draw the polyline that
passes through these points. Is it always a parabola?

4.5.5. Representing Lines and Planes.

We now turn to developing the principal forms in which lines andgs are represented mathematically. It
is quite common to find data structures within a graphics program thateapine or plane using one of
these forms.

Lines in 2D and 3D space.

A line is defined by two points, s&yandB (see Figure 4.27a). It is infinite in length, passing through the
points and extending forever in both directionding segment(segmentfor short) is also defined by two
points, itsendpoints, but extends only from one endpoint to the other (Figure 4.27Iparést line is the
infinite line that passes through its endpointsa is “semi-infinite.” It is specified by a point and a
direction. It “starts” at a point and extends infinitely far in\gegidirection (Figure 4.27c).

a). line b). ine segment c). ray

B
B
B
C
c \
C

staring
point

Figure 4.27. Lines, segments, and rays.

These objects are very familiar, yet it is useful to collect their impiorépresentations and properties in
one spot. We also describe the most important representation of all ferirmdmmputer graphics, the
parametric representation.

The parametric representation of a line.

The construction in Equations 4.32 and 4.33 is very useful, becatgaries the poinP traces out all of
the points on the straight line defined®wandB. The construction therefore gives us a way to name and
compute any point along this line.

This is done using parameter t that distinguishes one point on the line from another. Call thé Jined
give the namé.(t) to the position associated withUsingb =B - C we have:

L() =C+bt (4.39)

As t varies so does the positionldf) along the line. (One often thinkstadis “time”, and uses language

such as: “attime 0 ...", “as time goes on..”, or “later” to describe diftgrarts of the line.) Figure 4.28
shows vectob and the lind. passing througl andB. (A 2D version is shown but the 3D version uses the
same ideas.) Note wheké) is located for various values ofif t = 0, L(0) evaluates t€ so att = 0 we are

“at” point C. At t =1thenL(1) =C+ (B - C) =B. Ast varies we add a longer or shorter versiob af the
point C, resulting in a new point along the linet 1§ larger than 1 this point lies somewhere on the opposite
side ofC from B, and whert is less than 0 it lies on the sidebpposite fronB.

Hill - Chapter 4 09/23/99 page 27



@t>1
\//
AY B~
v \
L AAtzl
>\
e —_
//\ @t=0
@t<0
> X

Figure 4.28. Parametric representatigt) of a line.

For a fixed value of, sayt = 0.6, Equation 4.39 gives a formula for exactly one point along thédnlioegh
C andB: the particular point(0.6). Thus it is a description of a point. But since one can viaw
function oft that generates the coordinategwérypoint onL ast varies, it is called thparametric
representation of lineL.

The line, ray, and segment of Figure 4.26 are all represented by the($pai€quation 4.39. They differ
parametrically only in the values bfhat are relevant:

segment: @t£1
ray. 0 £t<¥ (4.40
line: ¥ <t<¥

The ray “starts” aC whent = 0 and passes throug@hatt = 1, then continues forever tiscreasesC is
often called the “starting point” of the ray.

A very useful fact is thdt(t) lies “fractiont of the way” betweel€ andB whent lies between 0 and 1. For
instance, wheh= 1/2 the point.(0.5) is themidpoint betweenC andB, and whert = 0.3 the point.(0.3) is
30% of the way fronC to B. This is clear from Equation 4.39 sinté&) - C = p| k| andB - C| = p|, so the

value of |t| is the ratio of the distanded)|- C| to B - C|, as claimed.

One can also speak of the “speed” with which the ddift‘moves” along line_. Since it covers distance
[b] tin timet it is moving at constant speddy. |

Example 4.5.2. A line in 2DFind a parametric form for the line that passes thr@sg(B, 5) andB = (2,

7). Solution: Build vectorb =B - C = (-1, 2) to obtain the parametric form L(t) = (3-t, 2 + 2 1).

Example 4.5.3. A line in 3DFind a parametric form for the line that passes thragl3, 5,6) and = (2,
7,3). Solution: Build vectorb =B - C = (-1, 2, -3) to obtain the parametric form L(t) = (3-t,2 + 2, 6 - 3t).

Other parametrizations for a straight line are possible, althoegtatle rarely used. For instance, the point
W(t) given by

W(t) =C + bt3

also “sweeps” over every point anlt lies atC whent = 0, and reachéd whent = 1. UnlikeL(t), however,
W() “accelerates” along its path fro@ito B.

Point normal form for a line (the implicit form).
This is the same as the equation for a line, but we rewrite it in a a@lpdtier reveals the underlying
geometry. The familiar equation of a line in 2D has the form

fx+gy=1 (4.41)

Hill - Chapter 4 09/23/99 page 28



wheref andg are some constants. The notion is that every pxigj that satisfies this equation lies on the
line, so it provides a condition for a point to be on the line. Note:iFtige only for a line in 2D; a line in
3D requires two equations. So, unlike the parametric form thdsvgeerfectly well in 2D and 3D, the point
normal form only applies to lines in 2D.

This equation can be written using a dot proddgct) (- (x, y) = 1, so for every point on a line a certain dot
product must have the same value. We examine the geometric intespretahe “vector” {, g), and in so
doing develop the “point normal” form of a line. It is very usefusurch tasks as clipping, hidden line
elimination, and ray tracing. Formally the point normal form makesention of dimensionality: A line in
2D has a point normal form, and a plane in 3D has one.

Suppose that we know linepasses through poinandB, as in Figure 4.29. What is its point normal
form? If we can find a vectar that is perpendicular to the line, then for any pBirt(x, y) on the line the
vectorR - C must be perpendicular tp so we have the condition &

n

R

A
Figure 4.29. Finding the point normal form for a line.

n-(R-C)=0 (point normal form) (4.42)

This is thepoint normal equation for the line, expressing that a certain dot producttomsbut to be zero
for everypointR on the line. It employs as daay point lying on the line, andny normal vector to the
line.

We still must find a suitable. Letb = B - C denote the vector froi@ to B. Thenb” will serve well as the

desiredn. For purposes of building the point normal form, any scalar mutbfmé\ works just as well for
n.

Example 4.5.4. Find the point normal form.Suppose liné passes through poin@= (3, 4) and = (5, -

2). Thenb=B-C= (2, -6) anc” = (6, 2) (sketch this). Choosir@as the point on the line, the point
normal formis: (6, 2) . KY) - (3, 4)) =0, or 8+ 2y = 26. Both sides of the equation can be divided by 26
(or any other nonzero number) if desired.

It's also easy to find the normal to a line given the equatidhe line, sayf x + g y= 1. Writing this once
again as f(g) - (x, y) = 1 itis clear that the normalis simply §, g) (or any multiple thereof). For instance,
the line given by %- 2y = 7 has normal vector (5, -2), or more genei&(ly, -2) for any nonzerK.

It's also straightforward to find the parametric form for a linepifi yare given its point normal form.
Suppose it is known that linehas point normal form- (P - C) = 0, wheren andC are given explicitly.

The parametric form is thdt(t) = C +n" t (why?). You can also obtain the parametric form if the equation
of the line is given. a). find the normaks in the previous paragraph, and b). find a p@ptd,) on the
line by choosing any value f@, and use the equation to find the correspon@ing

Moving from each representation to the others.

We have described three different ways to characterize a line. Each representationaisemtethat
distinguishes one line from another. This is the data that wouldszisn a suitable data structure within
a program to capture the specifics of each line being stored. For instance, #esdeitated with the
representation that specifies a line parametrically &+t would be the poin€ and the directiol. We
summarize this by saying the relevant dataCsh]}.

Hill - Chapter 4 09/23/99 page 29



The three representations and their data are:
The two point form: sa¢ andB; data = C, B}
The parametric formC + bt; data = {C, b}.
The point normal (implicit) form (in 2D onlyn- (P - C) = O; data = €, n}.

Note that a poin€ on the line is common to all three forms. Figure 4.30 shows hodatiagn each
representation can be obtained from the data in the other reptEsentFor instance, giverc{b} of the

parametric form, the normalof the point normal form is obtained simplyb‘fs

Figure 4.30. Moving between representations of a line.

Practice Exercise 4.5.5. Find the point normal formFind the point normal form for the line that passes
through (-3, 4) and (6, -1). Sketch the line and its normal vector ph gegper.

Planes in 3D space.

Because there is such a heavy use of polygons in 3D graphics, $ganeso appear everywhere. A
polygon (a “face”of an object) lies in its “parent” plane, and we often need to @igtobgainst planes, or
find the plane in which a certain face lies.

Planes, like lines, have three fundamental forms: the three-poimttfoe parametric representation and
the point normal form. We examined the three-point form in Section 4.4.2.

The parametric representation of a plane.

The parametric form for a plane is built on three ingredientsobite points,C, and two (nonparallel)
vectors,a andb, that lie in the plane, as shown in Figure 4.31. If we are given the tlureediinear)
pointsA, B, andC in the plane, then talkee=A - Candb =B - C.

Hill - Chapter 4 09/23/99 page 30




T~

Figure 4.31. Defining a plane parametrically.

To construct a parametric form for this plane, note that any jpoihe plane can be represented by a
vector sumgC plus some multiple ad plus some multiple df. Using parametersandt to specify the
“multiples” we haveC + sa +t b. This provides the desired parametric fde(s,

P(st)= C+as+bt (4.43)

Given any values of andt we can identify the corresponding point on the plane. For exathjgl position
“at" s= t= 0OisCitself,and thatad =1 and = - 2isP(1, -2)=C+a-2b.

Note that two parameters are involved in the parametric expressiarsfirface, whereas only one
parameter is needed for a curve. In fact if one of the parametixsdsdays = 3, therP(3, 1) is a function
of one variable and represents a straight R{g;t) = C+ 3a) +bt.

It is sometimes handy to arrange the parametric form into its “comporfi@m’by collecting terms

P(s,t) = (Cx +axs+byt, Cy+ay5+ byt,Cz+azs+ bz t). (4.44)

We can rewrite the parametric form in Equation 4.43 explicitly in$eshthe given pointa, B, andC:
just use the definitions af andb:

P(s,t)=C+5A-C)+t(B-C)
which can be rearranged into & ne combinatiorof points:
P(s, )= sA+tB+ (1-s-t)C (4.45)

Example 4.5.6. Find a parametric form given three points in a plan€Consider the plane passing through
=(3,3,3),B =(5,5,7), ancC = (1, 2, 4). From Equation 4.43 it has parametric form

P(st)= (1,2,4)+ (2,1, -19+ (4, 3, 3)t. This can be rearranged to the component féig:t) = (1 +2s+4
t) i +(2+s+3t)j + (4 -s+ 3t) k, or to the affine combination fori(s, t) = 5(3, 3, 3) +(5, 5, 7) + (1 s- t)(1,
2, 4).

The point normal form for a plane.
Planes can also be represented in point normal form, and the classic equatioarferea@rges at once.

Figure 4.32 shows a portion of plaRén three dimensions. A plane is completely specified by giving a
single pointB = (bx, by, bz), that lies within it, and the normal directianz= (nx, ny, nz), to the plane. Just
as the normal vector to a line in two dimensions orients the line, thelrtorenplane orients the plane in
space.

Hill - Chapter 4 09/23/99 page 31



X

Y|
Figure 4.32. Determining the equation of a plane.

The normah is understood to be perpendicular to any line lying in the planearfFarbitrary poinR = (X,
y, 2) in the plane, the vector froRito B must be perpendicular tg giving:

n-R-B)=0 (4.46)

This is the point normal equation of the plane. It is identical im fiorthat for the line: a dot product set
equal to 0. All points in a plane form vectors wittthat have the same dot product with the normal vector.
By spelling out the dot product and usimg (ny, ny, nz), we see that the point normal form is the
traditional equation for a plane:

Nx X +Nyy+nzz=D (4.47)

whereD =n - (B - 0). For example, if given the equation for a plane suckx a&b+ 8z = 2, you know
immediately that the normal to this plane is (5, -2, 8) or any muliiptleis. (How do you find a point in
this plane?)

Example 4.5.7. Find a point normal form. Let planeP pass through (1, 2, 3) with normal vector (2, -1, -
2).
Its point normal form is (2, -1, -2) X(y, z) - (1, 2, 3)) = 0. The equation for the plane may be written out
asX-y-2z=6.
Example 4.5.8. Find a parametric form given the equation of the planFind a parametric form for the
plane 2x -y + 3z= 8.Solution: By inspection the normal is (2, - 1, 3). There are many paraat&ns;
we need only find one. F&, choose any point that satisfies the equatida; (4, 0, 0) will do. Find two
(noncollinear) vectors, each having a dot product of O with (23); $pme hunting finds that= (1, 5, 1)
andb = (0, 3, 1) will work. Thus the plane has parametric fB{st) = (4, 0, 0) + (1, 5, 13+ (0, 3, 1}.
Example 4.5.9. Finding two noncollinear vectorgGiven the normah to a plane, what is an easy way to
find two noncollinear vectora andb that are both perpendicularn@ (In the previous exercise we just
invented two that work.) Here we use the fact that the cross produty eéctor withn is normal tan. So
we take a simple choice such as (0, 0, 1), and constagits cross product witin

a=(0,0,1y n=(-y,n 0)
(Is this indeed normal 1@?). We can use the same idea to forthat is normal to both anda:

b=n" a= (nxnz -nynz k2 +ny?)
(Check thab » aandb " n.) Sob is certainly not collinear with.

We apply this method to the plane (3, 2, 33--(@,7,0)) = 0. Sea = (0, 0, 1) n = (-2, 3, 0) andb = (-15,
-10, 13). The plane therefore has parametric form:

P(s t) = (2 -2s- 15t, 7 + 3s- 10t, 13t).
Check IsP(s, 1) -C=(-X%- 15, -35-10t, 13) indeed normal ta for everys andt?

Practice Exercise 4.5.7. Find the Plané=ind a parametric form for the plane coincident withythe
plane.

Hill - Chapter 4 09/23/99 page 32



Moving from each representation to the others.
Just as with lines, it is useful to be able to move between the thresawfations of a plane, to manipulate
the data that describes a plane into the form best suited to a problem.

For a plane, the three representations and their data are:
The three point form: say, B, andA; data = C, B, A}
The parametric formC + as+ bt; data={C, a, b}.
The point normal (implicit) formn- (P - C) = 0; data = €, n}.

A point C on the plane is common to all three forms. Figure 4.33 shows how thia datdn representation
can be obtained from the data in the other representations. Check each one ddiftutiythese cases
have been developed explicitly in Section 4.4.2 and this section. Som=valeped in the exercises. The
trickiest is probably the calculation in Example 4.5.10. Anothetrdeserves some explanation is finding
three points in a plane when given the point normal form. One @iig,already known. The other two
are found using special values in the point normal form itself, whitteisquatiomx + ny + nz=n- C.
Choose ,for convenienc&,= (0, 0,a,), and use the equation to determine thatn- C /n,. Similarly,

chooseB = (0, by, 0), and use the equation to fing: n- C /n,.

Figure 4.33. Moving between representations of a plane.

Planar Patches.
Just as we can restrict the parameterthe representation of a line to obtain a ray or a segment, we can
restrict the parametessandt in the representation of a plane.

In the parametric form of Equation 4.43 the valuessfandt can range from¥ to ¥, and thus the plane
can extend forever. In some situations we want to deal with only a “pieegilahe, such as a
parallelogram that lies in it. Such a piece is callpthaar patch, a term that invites us to imagine the
plane as a quilt of many patches joined together. Later we examind suri@ces made up of patches
which are not necessarily planar. Much of the practice of modeliids $oVolves piecing together patches
of various shapes to form the skin of an object.

Hill - Chapter 4 09/23/99 page 33



A planar patch is formed by restricting the range of allowablerpeter values fas andt. For instance,
one often restrictsandt to lie only between 0 and 1. The patch is positioned and oriented i lspac
appropriate choices @f b, andC. Figure 4.34a shows the available rangearfidt as a square in
parameter spaceand Figure 4.34b shows the patch that results from thigtigstrin object space.
a). b).

Parameter
AU space

world
coordinates

Figure 4.34. Mapping between two spaces to define a planar patch.

To each pointq t) in parameter space there corresponds one 3D point in theRgatth= C + as + bt.
The patch is a parallelogram whose corners correspond to the four corpararoéter space and are
situated at

P(0, 0) =C;

P(1, 0) =C + a; (4.48)
P(0, 1) =C +b;

P(1,1)=C+a+h.

The vectors andb determine both the size and the orientation of the patataritib are perpendicular,
the grid will become rectangular, and if in additsoandb have the same length, the grid will become
square. Changin@G just shifts the patch without changing its shape or orientation.

Example 4.5.10. Make a patchLetC= (1, 3, 2)a= (1, 1, 0), and = (1, 4, 2). Find the corners of the
planar patchSolution: From the preceding table we obtain the four corr®{:0) = (1, 3, 2)P(0, 1) =
(2,7,4),P(1,0) = (2,4,2),anB(1, 1) = (3, 8, 4).

Example 4.5.11. Characterize a Patchrinda, b, andC that create a square patch of length 4 on a side
centered at the origin and parallel to ¥he-plane.Solution: The corners of the patch are at (2, 0, 2), (2, 0,
-2),(-2,0,2),and (-2,0, -2). Choose any corner, say (2, 0, - ), Taena andb each have length 4
and are parallel to either tlxeor thez-axis. Choosa = (-4, 0, 0) antd = (0, 0, 4).

Practice Exercise 4.5.8. Find a Patcl¥ind pointC and some vectomsandb that create a patch having
the four corners (-4, 2,1), (1,7,4), (-2, -2, 2),and (3, 3, 5).

4.6. Finding the Intersection of two Line Segments.

We often need to compute where two line segments in 2D space interggotaitsain many other tasks,
such as determining whether or not a polygon is simple. Its soluifidfiustrate the power of parametric
forms and dot products.

The Problem: Given two line segments, determine whether they intersect, and dithénd their point
of intersection.

Hill - Chapter 4 09/23/99 page 34



Suppose one segment has endpdaadB and the other segment has endpoints C and D. As shown in
Figure 4.35 the two segments can be situated in many different weggscdn miss each other (a and b),
overlap in one point (c and d), or even overlap over some region (e). They may not be parallel. We
need an organized approach that handles all of these possibilities.

D
a). b)- B C). B
D
D
A A
C A c
C
d) D
e). //D
B A e B
A C

Figure 4.35. Many cases for two line segments.

Every line segment hasparent line, the infinite line of which it is part. Unless two parent lines are
parallel they will intersect at some point. We first locate this point.

We set up parametric representations for each of the line segmguotstion. CalAB the segment fromA
toB. Then

AB(t)=A+bt (4.49)

where for convenience we defibe= B - A. Ast varies from 0 to 1 all points on the finite line segment are
visited. Ift is allowed to vary from¥ to ¥ the entire parent line is swept out.

Similarly we call the segment fro@to D by the namé&D, and give it parametric representation (using a
new parameter, sayj)

CD(u) =C+du,
whered =D - C. We use different parameters for the two lindsy one andi for the other, in order to
describe different points on the two lines independently. (Ifdheegparameter were used, the points on the

two lines would be locked together.)

For the parent lines to intersect, there must be specific valuemdé for which the two equations above
are equal:

A+bt=C+du

Defining c = C - A for convenience we can write this condition in terms of three known vectdrsvo
(unknown) parameter values:

bt=c + du (4.50)

This provides two equations in two unknowns, similar to Equation 4.2xdlVe it the same way: dot both
sides withd" to eliminate the term id, givingd” Xt =d~  &. There are two main cases: the term
d b is zerooritis not.

Case 1:The termd” %0 is notZero.

Hill - Chapter 4 09/23/99 page 35



Here we can solve fdrobtaining:
_d x
d" b

t (4.51)

Similarly “dot” both sides of Equation 4.50 Wit to obtain (after using one additional property of perp-
dot products—which one?):

b" xc
U=—=

d (4.52)

Now we know that the two parent lines intersect, and we know where.iBdbtsn’t mean that the line
segments themselves intersect. lfes outside the interval [0, 1], segmé& doesn’t “reach” the other
segment, with similar statementaiifies outside of [0,1]. If bothandu lie between 0 and 1 the line
segmentslointersect at some poirlt, The location of is easily found by substituting the valuet @i
Equation 4.49:

N md
| = A+ ieIiA b the intersection point 4.53
T oo ( point) (4.53)

Example 4.6.1:Given the endpointa = (0, 6),B = (6, 1),C = (1, 3), and = (5, 5), find the intersection if
it exists.Solution: d” -b = -32, sot=7/16 and u = 13/32 which both lie between 0 and 1, and so the

segments do intersect. The intersection lieg,a) € (21/8, 61/16). This result may be confirmed visually
by drawing the segments on graph paper and measuring the obsereatiiver

Case 2:The termd” D is Zero.
In this case we knod andb are parallel (why?). The segments might still overlap, but this cgrehap
only if the parallel parent lines are identical. A test for thiseigetbped in the exercises.

The exercises discuss developing a routine that perfiensomplete intersection test on two line
segments.

Practice Exercises.

4.6.1. When the parent lines overlapWe explore case 2 above, where the téfnb = 0, so the parent
lines are parallel. We must determine whether the parent lines are identical, awtettser the segments
themselves overlap.

To test whether the parent lines are the same, see witdilkeron the parent line throughandB.

a). Show that the equation for this parent liné@ts(y - Ay) - by (x - Ax) = 0.

We then substitut€y for x andCy for y and see whether the left-hand side is sufficiently close to zero (i.e.
its size is less than some tolerance such a%).JlOnot, the parent lines do not coincide, and no intersection
exists. If the parents lines are the same, the final test is to see whetegrients themselves overlap.

b). To do this, show how to find the two valugsnd tq at which this line through A and B reacl@and

D, respectively. Because the parent lines are identical, we can use jusbthponent. SegmeAB

begins at 0 and ends at 1, and by examining the ordering of the four valuesdhdt,, we can readily
determine the relative positions of the two lines.

c). Show that there is an overlap unless Iboéimdt, are less than 0 or both are larger than 1. If there is an
overlap, the endpoints of the overlap can easily be found from thesvaftc andtg.

d). Given the endpoint = (0, 6),B = (6, 2),C = (3, 4), and = (9, 0), determine the nature of any
intersection.

Hill - Chapter 4 09/23/99 page 36



|4.6.2. The Algorithm for determining the intersection.Write the routinesegintersect
|be used in the contesxf(segintersect(A, B, C, D, InterPt)) <do something>

It takes four points representing the two segments, and sélifthe segments do not intersect, and 1 if
they do. If they do intersect the location of the intersection is pladeteiPt . It returns -1 if the parent
lines are identical.

4.6.3. Testing the Simplicity of a PolygorRecall that a polygoR is simple if there are no edge
intersections except at the endpoints of adjacent edges. Fashion ainbutis&imple(Polygon P)

that takes a brute force approach and tests whether any pair of £ttgeelish of vertices of the polygon
intersect, returnin@ if so, and 1 if not soRolygon is some suitable class for describing a polygon.) This
is a simple algorithm but not the most efficient one. See [moret91] and jgiaEgErfor more elaborate
attacks that involve some sorting of edges amd v.

4.6.4. Line Segment IntersectionskFor each of the following segment pairs, determine whether the
segments intersect, and if so where.

() that would

1.A=(1,4), B=(7,12), C=(7/2 5/2), D = (7, 5);
2.A=(1,4), B=(7,12), C=(5,0), D= (0, 7);
3.A=(0,7), B=(7,0, C=(8, -1), D = (10, - 3);

4.6.1. Application of Line Intersections: the circle through three points.

Suppose a designer wants a tool that draws the unique circle trest frassigh three given points. The

user specifies three poims B, andC, on the display with the mouse as suggested in Figure 4.36a, and the
circle is drawn automatically as shown in Figure 4.36b. The umigcle that passes through three points is
called theexcircle or circumscribed circle, of the triangle defined by the points. Which circle is it? We
need a routine that can calculate its center and radius.

a). Which circle? b). What it looks like c¢). How to find its center
A A A
? perp.
f S bisector #P
°C C C
perp.
B B bisector #1 g

Figure 4.36. Finding the excircle.

Figure 4.35c shows how to find it. The cerfiaf the desired circle must be equidistant from all three
vertices, so it must lie on thperpendicular bisector of eachside of triangléABC (The perpendicular
bisector is the locus of all points that are equidistant from two giviespgo Thus we can determiigaf
we can compute where two of the perpendicular bisectors intersect.

We first show how to find a parametric representation of the paiqeéar bisector of a line segment.
Figure 4.37 shows a segmé&with endpointsA andB. Its perpendicular bisectaris the infinite line that
passes through the midpotof segmeng, and is oriented perpendicular to it. But we know that midpoint

M is given by A +B)/2, and the direction of the normal is given(@®- A) ", so the perpendicular
bisector has parametric form:

Hill - Chapter 4 09/23/99 page 37



Figure 4.37. The perpendicular bisector of a segment.
1 A ) _
L(t) = > (A+B)+(B- A) t (the perpendicular bisector AB) (4.54)

Now we are in a position to compute the excircle of three points. RegumFigure 4.35b we seek the
intersectionS of the perpendicular bisectors/AB andAC. For convenience we define the vectors:

a=B-
b=C- (4.55)
c=A-

Owm>

To find the perpendicular bisector AB we need the midpoint &B and a direction perpendicularAd.
The midpoint ofABis A +a/ 2 (why?). The direction perpendicularA8 is a" . Sothe parametric form
for the perpendicular bisectorAs+a/ 2 +a t. Similarly the perpendicular bisector of ACAs-c/ 2 +
o, using parametar. PointSlies where these meet, at the solution of:

a't=b/2+c u

(where we have uset+ b + c=0). To eliminate the term in take the dot product of both sides with
and obtairt=1/2p -c)/ (aA - €). To findSuse this value farin the representation of the perpendicular
bisectorA+a/ 2 +a’ t, which yields the simplexplicit form:

1 bx g _
S=A+-= Z%. +——a 0 (center of the excircle) (4.56)

2 ax 9

The radius of the excircle is the distance friSto any of the three vertices, so itSs JA|. Just form the
magnitude of the last term in Equation 4.56. After some manipulatiork(thiemut) we obtain:

. / bxc &
radius = l%l ZaA—xcg +1 (radius of the excircle) (4.57)
a

OnceSand the radius are known, we can diseevCircle() from Chapter 3 to draw the desired circle.

Example 4.6.2 Find the perpendicular bisectorof the segmen® having endpointé = (3, 5) andB = (9,
3).

Solution: By direct calculation, midpoir¥l = (6, 4), and B- A) = (2, 6), sd has representatidi(t) =
(6 + 2, 4 + ). It is useful to plot botls andL to see this result.

100ther closed form expressions for S have appeared previously, e.ddm4g80] and [lopex92]

Hill - Chapter 4 09/23/99 page 38



Every triangle also has amscribed circle, which is sometimesatessary to compute in a computer-aided
design context. A case study examines how to do this, and also dishiesbeguilingnine-point circle.

Practice Exercise 4.6.5. A Perpendicular BisectoFind a parametric expression for the perpendicular
bisector of the segment with endpoiAts (0, 6) andB = (4, 0). Plot the segment and the line.

4.7. Intersections of Lines with Planes, and Clipping.

The task of finding the intersection of a line with another line or aviphane arises in a surprising variety
of situations in graphics. We have already seen one approach in Sectiat4i6ds where two line
segments intersect. That approach used parametric representatiaik fbehline segments, and solved
two simultaneous equations.

Here we develop an alternative method that works for both lineslamekplt represents the intersecting
line by a parametric representation, and the line or plane being inéergeet point normal form. It is very
direct and clearly reveals what is going on. We develop the method ond¢kearapply the results to the
problem of clipping a line against a convex polygon in 2D, or a convex pobinéd3D. In Chapter 7 we
see that this is an essential step in viewing 3D objects. In Chapter 14 we @sadlietersection
technique to get started in ray tracing.

In 2D we want to find where a line intersects another line; in 3D we waintdtavhere a line intersects a
plane. Both of these problems can be solved at once because the formuiatiemis of dot products,
and the same expressions arise whether the involved vectors are 2D or 3D. (Weraksthd problem of
finding the intersection of two planes in the exercises: it toagedon dot products.)

Consider a line described parametrical\Ré3 = A + ct. We also refer to it as a “ray”. We want to
compute where it intersects the object characterized by the point normai f@P - B) = 0. In 2D this is a
line; in 3D it is a plane. Poif lies on it, and vectan is normal to it. Figure 4.38a shows the ray hitting a
line, and part b) shows it hitting a plane. We want to find the location of thgdiht”.

"hit' point
\n.(P-B):O /
n.(P-B)=0

Figure 4.38. Where does a ray hit a line or a plane?

Suppose it hits at=ty;, the “hit time”. At this value of the line and ray must have the same coordinates,
SOA + ctyy must satisfy the equation of the point normal form of the lingame. Therefore we substitute
this unknown “hit point'into the point normal equation to obtain a conditiort,gn

n-(A+ct, -B)=0.

This may be rewritten as

n- (A-B)+n -Ctyr =0,

which is a linear equation tg. Its solution is:

NXYB- A
thie = L (hit ime — 2D and 3D cases) (4.58)
nxc

Hill - Chapter 4 09/23/99 page 39



As always with a ratio of terms we must examine the eventuality thatrileendwtor of, . is zero. This
occurs whem-c = 0, or when the ray is aimed parallel to the plane, in which case therbitsan all1

When the hit time has been computed, it is simple to find the lacatihe hit point : Substitutg, into
the representation of the ray:

“hit” point: P = A+ ct_ (hit spot — 2D and 3D cases) (4.59)
hit it

In the intersection problems treated below we will also need to knogrally which direction the ray
strikes the line or plane: “along with” the nornmabr “counter to’n. (This will be important because we
will need to know whether the ray is exiting from an object or argeti) Figure 4.39 shows the two
possibilities for a ray hitting a line. In part a) the angle betvileemay’s directiong, andn is less than 90
so we say the ray is aimed “along with”In part b) the angle is greater thar? 96 the ray is aimed
“counter to"n.

a). ray is aimed "along with' b). ray is aimed "counter to"
n n
c
. c
A A

Figure 4.39. The direction of the ray is “along” or “agaimst”

It is easy to test which of these possibilities occurs, sincgdghef n - c tells immediately whether the
angle between n and c is less than or greater tfaiP@tling these ideas together, we have the three
possibilities:

ifn-c>0 therayis aimed “along with” the normal;
ifn-c=0 therayis parallel to the line (4.60)

if n-c<0 therayis aimed “counter to” the normal

Practice Exercises.

4.7.1. Intersections of rays with lines and plane&ind when and where the rAy+ ct hits the objech -
(P-B) =0 (linesin the 2D or planes in the 3D).

a).A=(2,3),c=(4,-4),n=(6,8),B=(7,7).

b).A=(2,-4,3)c=(4,0,-49n=(6,9,9),B=(-7, 2, 7).

c).A=(2,0),c=(0-4),n=(0,8),B=(7,0).

d).A=(2,4,3)c=(4,4,-49)h=(6,4,8)B=(7,4,7).

4.7.2.Rays hitting Planes.Find the point where the ray (1,5,2) + (5, -2,I8s the planexX-4y + z= 8.
4.7.3. What is the intersection of two planes@eometrically we know that two planes intersect in a
straight line. But which line? Suppose the two planes are givérl? - A) =0 andmXP -B) =0.
Find the parametric form of the line in which they intersect. You nmalifieasiest to:

a). First obtain a parametric form for one of the planes:Gayas + bt for the second plane.

b). Then substitute this form into the point normal form for ttst fitane, thereby obtaining a linear
equation that relates parametsesdt.

c). Solve forsin terms oft, says = E + Ft. (Find expressions fdE andF.)

d). Write the desired line &+ a(E + Ft) + bt.

4.8. Polygon Intersection Problems.

11if the numerator is also O the ray lies entirely in the line (2D) onep(@D). (why?).

Hill - Chapter 4 09/23/99 page 40



We know polygons are the fundamental objects used in both 2D and 3DcgrdptiD graphics their
straight edges make it easy to describe them and draw them. In 3D graplubggct is often modeled as
a polygonal “mesh”: a collection of polygons that fit together to makiesu'skin”. If the skin forms a
closed surface that encloses some space the mesh is called a polyhedrady\Westes and polyhedra
in depth in Chapter 6.

Figure 4.40 shows a 2D polygon and a 3D polyhedron that we might need teasralgnder in a graphics
application. Three important questions that arise are:

Figure 4.40. Intersection problems of a line and a polygonal object.

a). Is a given poinP inside or outside the object?
b). Where does a given r&first intersect the object?
¢). Which part of a given link lies inside the object, and which part lies outside?

As a simple example, which part(s) of the lirye 2x = 6 lie inside the polygon whose vertices are (0, 3), (-
2,-2),(-5,0), (0, -7), (1, 1)?

4.8.1. Working with convex polygons and polyhedra.

The general case of intersecting a line with any polygon or polyhedronéscquiplex; we address it in
Section 4.8.4. Things are much simpler when the polygon or mblyhés convex. They are simpler
because a convex polygon is completely described by a set of “bouimdisiy in 3D a convex polyhedron
is completely described by a set of “bounding planes”. So we neeteshifne line against a set of
unbounded lines or planes.

Figure 4.41 illustrates this for the 2D case. Part a shows a coerntagpn, and part b) shows the bounding
linesLy, Ly, etc. of the pentagon. Each bounding line defines two half spaces: the inkgpmbalthat
contains the polygon, and the outside half space that shares no jitbirtteevpolygon. Part c) of the figure
shows a portion of the outside half space associated with the bolindihg

Hill - Chapter 4 09/23/99 page 41



L1

\

Figure 4.41. Convex polygons and polyhedra.

Lo

Example 4.8.1. Finding the bounding linesFigure 4.42a shows a unit square. There are four bounding
lines, given byx = 1,x=-1,y =1, andy = -1. In addition, for each bounding line we can identify the
outward normal vector: the one that points into the outside half space oltgiry line. The outward
normal vector for the ling = 1 is of coursa = (0, 1). (What are the other three?)
a). b).

AY =1 y
1 7/ 1

1

£

X
>

I\ an outward normal
Figure 4.42. Examples of convex polygons.

The triangle in part b) has three bounding lines. (What is the equatiorcifoliree?) The point normal
form for each of the three lines is given next; in each case it uses theconomaual (check this):

(-1, 0)--(0,0)=0;
(0.-1)-f-(0,0)=0;
1,1-P-10)=0;

The big advantage in dealing with convex polygons is that werpeintersection tests only on infinite
lines, and don't need to check whether an intersection lies “beyond” an endpoicall the complexity
of the intersection tests in Section 4.7. In addition the pointadiorm can be used, which simplifies the
calculations.

For a convex polyhedron in 3D, each plane has an inside and an bai$isigace, and an outward
pointing normal vector. The polyhedron is the intersection of all thedrsilf spaces, (the set of all points
that are simultaneously in the inside half space of every bounding plane).

4.8.2. Ray Intersections and Clipping for Convex Polygons.
We developed a method in Section 4.7 that finds where a ray hits @idiradliine or plane. We can use
this method to find where a ray hits a convex polygon or polyhedron

The Intersection ProblemwWhere does the r&d + ct hit polygonP?

Figure 4.43 shows a ray+ c tintersecting polygo®. We want to know all of the places where the ray
hits P. Becausé is convex the ray hit8 exactly twice: It enters once and exits once. Call the valuest of

which it enters and exitt, andt,, respectively. The ray intersection problem is to compute the values of

tin andtyy. Once these hit times are known we of course know the hit points themselves:

Hill - Chapter 4 09/23/99 page 42



Figure 4.43. RayA + ct intersecting a convex polygon.

Entering hit point:A + c tj, (4.61)
Exiting hit point:A + c toy

The ray is insidé for all t in the interval i, toud-

Note that finding;, andt,, not only solves the intersection problem, but also the clipping prokieva. |
knowt;, andt,,; we know which part of the lin& + ct lies insideP. Usually the clipping problem is stated
as:

The Clipping problemFor the two point& andC which part of segmetC lies insideP?

Figure 4.44 shows several possible situations. Part a) shows theheasd andC both lie outsidé®, but
there is a portion of the segmex(® that lies insidd®.

a). b). C).
t tout /l 1
in ti 1
/0 \ / C m\ 0 | /

A A

Figure 4.44. A segment clipped by a polygon.

If we consider segmeiC as part of a ray given bj + ct wherec = C - A, then pointA corresponds to

the point on the ray at= 0, andC corresponds to the pointtat 1. These “ray times” are labeled in the
figure. To find the clipped segment we comptitandt,, as described above. The segment that “survives
clipping has end point& + c t,, andA + c tyy. In Figure 4.43b point lies insideP and sd, is larger than

1. The clipped segment has end poitsc t;, andC. In part ¢) bottA andC lie insideP, so the clipped
segment is the sam&cC.

In general we computg, and compare it to 0. The larger of the values Qtamglused as the “time” for
the first end point of the clipped segment. Similarly, the smaller of thesaland, is used to find the
second end point. So the end points of the clipped segment are:

A = A+cmaxo,t) (4.62)
C = A+cmin(ty,l)

Now how ard;, andt,, computed? We must consider each of the bounding liregnofurn, and find
where the ray + c t intersects it. We suppose each bounding line is stored ibrpoimal form as the pair

Hill - Chapter 4 09/23/99 page 43



{B, n}, whereB is some point on the line amds theoutward pointing normalor the line: it points to the
outside of the polygon. Because it is outward pointing the test of Bgua60 translates to:

ifn-c>0 the ray is exiting fror®;
ifn-c=0 the ray is parallel to the line (4.63)
ifn-c<0 the ray is entering

For each bounding line we find:
a). The hit time of the ray with the bounding line (use Equatid)4.5
b). Whether the ray is entering or exiting the polygon (use Equaa)

If the ray is entering, we know that the time at which the ray ultimatekrsP (if it enters it at all) cannot
beearlier than this newly found hit time. We keep track of the “earliest possibeimymtime ag;,. For
each entering hit time,;, we replace;, by max,, tn). Similarly we keep track of thiatestpossible exit
time ast,y, and for each exiting hit we replaigg by mintou, thi).

It helps to think of the intervat], to,J as thecandidate interval of t, the interval ot inside of which the

ray mightlie inside the object. Figure 4.45 shows an example for the clipping proerknow the point

A + ct cannotbe insideP for anyt in the candidate interval. As each bounding line is tested, the candidat
interval gets reduced §sis increased d,, is decreased: pieces of it get “chopped” off. To get started we
initialize t;, to 0 and, to 1 for the line clipping problem, so the candidate interval is.[0,1]

candidate

the ray is interval the ray is

outsideP here outside P here
t

Figure 4.45. The candidate interval for a hit.

The algorithm is then:
1). Initialize the candidate interval to [0}4]
2). For each bounding line, use Equation 4.58 to find the hitttinaad determine whether it's an entering
or exiting hit:
if it's an entering hit, set, = max¢, thi)
if it's an exiting hit, set,, = min(oy thir)
If at any point;, becomes greater thap, we know the ray missézentirely, and testing is terminated
3). If candidate interval is not empty, then from Equation théZegment from + c t, to A + C toy is
known to lie insideP. For the line clipping problem these are the endpoints of the clippedrtinthe ray
intersection problem we know the entering and exiting points of the ray.

Note that we stop further testing as soon the candidate intervahganirhis is called aarly out: if we
determine early in the processing that the ray is outside of thgagmolywe save time by immediately
exiting from the test.

Figure 4.46 shows a specific example of clipping: we seek the portgggofenAC that lies in polygon
P. We initializet;, to 0 and,;to 1. The ray “starts” & att = 0 and proceeds to poi@i reaching it at =
1. We test it against each bounding linel,, .., in turn and updatg andt,, as necessary.

12 For the ray intersection problem, where the ray extendstalfiriar in both directions, we sgt= - ¥
andt,,. =¥ . In practice, is set to a large negative value, aqgto a large positive value.

Hill - Chapter 4 09/23/99 page 44



intersects b
@47 -

N\ -

e
r e
e

intersects b

@3.4
Figure 4.46. Testing when a ray lies inside a convex polygon.

—

Suppose when we test it against ligave find an exiting hit at = 0 .83. This setg, to 0.83, and the
candidate interval is now [0, 0.83]. We then test it agaipand find an exiting hit a@t= 0.66. This reduces
the candidate interval to [0, 0.66]. The test agdipgfives an exiting hit at= 3.4. This tells us nothing
new: we already know the ray is outsidetfor0.66. The test againsigives an entering hit at= -0.47.

So we set;, to -0.47, and the candidate interval is [-0.47, 0.66]. The testwijfves an entering hit &t
0.2, sat, is updated to 0.2. Finally, testing agaibsgives an entering hit at= 0.28, and we are done. The
candidate interval is [0.28, 0.66].In fact the minside P for alt between 0.28 and 0.66.

Figure 4.47 shows the sequence of updatgsdadt,, that occur as each of the lines above is tested.

linetest in tout

0.83
0.66
0.66
0.66
. 0.66
0.28 0.66

I\)CD(DCDCD

o

abhwMNDEFLO

Figure 4.47. Updates on the values;,pandt,.

4.8.3. The Cyrus-Beck Clipping Algorithm.

We build a routine from these ideas, that performs the clipping of a limees¢é@gainst any convex
polygon. The method was originally developed by Cyrus and Beck [cyrus78].alaighly efficient
clipper for rectangular windows was devised by Liang and Barsky [liang84Hon similar ideas. It is
discussed in a Case Study at the end of this chapter.

The routine that implements the Cyrus-Beck clipper has interface:
int CyrusBeckClip(Line& seg, LinelList& L);

Its parameters are the line segmeny, to be clipped (which contains the first and second endpoints
namedseg .first  andseg.second ) and the list of bounding lines of the polygon. It ckeg against
each line inL as described above, and places the clipped segment sk in (This is whyseg must be
passed by reference.) The routine returns:

0 if no part of the segment liesih( the candidate interval became empty);
1 if some part of the segment does li€in

Figure 4.48 shows pseudocode for the Cyrus Beck algorithm. Thelipg&egment , LineList , and

Vector2 are suitable data types to hold the quantities in question (see thiseje Variableaumer
anddenom hold the numerator and denominatortfgrof Equation 4.48:

Hill - Chapter 4 09/23/99 page 45



numer=nx B- A

(4.64)
denom=n>c

int CyrusBeckClip(LineSegment& seg, LineList L)

double numer, denom; // used to find hit time for each line
double tin = 0.0, tOut = 1.0;

Vector2 c, tmp;

form vector: ¢ = seg.second - seg.first

for(inti=0; i< L.num; i++) // chop at each bounding line

form vector tmp = L.line[i].pt - first

numer = dot(L.line[i].norm, tmp);

denom = dot(L.line[i].norm, c);

if('chopCl(numer, denom, tin, tOut)) return O; // early out

/I adjust the endpoints of the segment; do second one 1st.
if (tOut < 1.0) // second endpoint was altered

seg.second.x = seg.first.x + ¢.x * tOut;
seg.second.y = seg.first.y + c.y * tOut;

}

if (tin > 0.0) // first endpoint was altered
seg.first.x =seg.first.x + c.x * tin;
seg.first.y =seg.first.y + c.y * tin;

}
}

return 1; // some segment survives

Figure 4.48. Cyrus-Beck Clipper for a Convex Polygon, 2D case (pseudocode).

Note that the value a¢feg.second is updated first, since we must use the old valisegffirst in
the update calculation for bosieg.first andseg.second.

The routinechopCI() is shown in Figure 4.49. It useamer anddenom of Equation 4.64 to calculate
the hit time at which the ray hits a bounding line, uses Equaiidtd determine whether the ray is
entering or exiting the polygon, and “chops” off the piece of the candidateah@ that is thereby found
to be outside the polygon.

int chopCl(double& tin, double& tOut, double numer, double
denom)

{
double tHit;

if (denom < 0) /l ray is entering

tHit = numer / denom;

if (tHit > tOut) return O; // early out

else if (tHit > tIn) tin = tHit; // take larger t
else if(denom > 0) Il ray is exiting

tHit = numer / denom;

if(tHit < tin) return O;  // early out

if(tHit < tout) tOut = tHit; // take smaller t

else // denom is O: ray is parallel
if(numer <= 0) return 0; // missed the line

return 1; // Cl is still non-empty

}

Figure 4.49. Clipping against a single bounding line.

Hill - Chapter 4 09/23/99 page 46



If the ray is parallel to the line it could lie entirely in theidieshalf space of the line, or entirely out of it. It
turns out thahumer=n - (B - A) is exactly the quantity needed to tell which of these cases occurs. See the
exercises.

The 3D case: Clipping a line against a Convex Polyhedron.

The Cyrus Beck clipping algorithm works in three dimensions in exactly the wawy In 3D the edges of
the window become planes defining a convex region in three dimenaiah#)e line segment is a line
suspended in spacghopCl () needs no changes at all (since it uses only the values of dot products -
throughnumer anddenom ). The data types ilfCyrusBeckClip () must of course be extended to 3D
types, and when the endpoints of the line are adjusted the z-compurstrite adjusted as well.

Practice Exercises.

4.8.2. Data types for variable in the Cyrus Beck ClipperProvide useful definitions for data types, either as
struct’s or classes, fotineSegment , LineList , andVector2 used in the Cyrus Beck clipping
algorithm.

4.8.3. What does numek=0 do?

Sketch the vectors involved in valuemafmer in chopCl()  and show that when the rAy+ c t moves
parallel to the bounding line - (P - B) = 0, it lies wholly in the inside half space of the line if and only if
numer > 0.

4.8.4. Find the Clipped Line.Find the portion of the segment with endpoints (2, 4) and (20, 8) ésawiihin
the quadrilateral window with corners at (0, 7), (9, 9), (14,4), and (2, 2).

4.8.4. Clipping against arbitrary polygons.

We saw how to clip a line segment against a convex polygon in the gedction. We generalize this to
a method for clipping a segment agaiasy polygon.

The basic problem is to find where the fay ct lies inside polygorP given by the vertex lige, Py, .., Py.
1. Figure 4.50 shows an example.

Figure 4.50. Where is a ray inside an arbitrary polygen

It is clear that the ray can enter and exit ffldmultiple times in general, and that the result of clipping a
segment against P may result ilisaof segments rather than a single one. Also, of coBriseno longer
described by a collection of infinite bounding lines in point normahfare must work with thél finite
segments such &5 P, that form its edges.

The problem is close to the problem we dealt with in Section 4.7: findingtéredntion of two line
segments. Now we are intersecting one line segment with the sequeneesefiinents associated with

We represent each edgePoparametrically (rather than in point normal form). For instance, theRdge
is represented d% + esu wheree; = P, - P; is theedge vectorassociated withs. In general, théth edge
is given byP, + eu, for uin [0,1] andi =0, 1, ...N-1wheree =P, - P,, and as always we equdg with
Po.

Recall from Section 4.7 that the rAy+ ct hits thei-th edge whem andu have the proper values to make
+ct =P, +¢e u. Calling vectoib; = P, - Awe seek the solution (valuestaindu) of

Hill - Chapter 4 09/23/99 page 47



ct=b;+eu
Equations 4.51 and 4.52 hold the answers. When converted to the notegion we have:

8 b, ¢’ b,
t=—= and U=— }
e x g x

If eiA XC is 0 thei-th edge is parallel to the ray directioand there is no intersection. There is a true
intersection with théth edge only it falls in the interval [0,1].

We need to find all of the legitimate hits of the ray with edgés ahd place them in a list of the hit times.
Call this listhitList . Then pseudocode for the process would look like:

initialize hitList to empty
for(inti=0; i< N;i++) /Il for each edge of P

build bi, ei for the i-th edge
solve fort, u
if( uliesin[0,1]
add t to the hitList
}

What we do now with this list depends on the problem at hand.

The ray intersection problem. (Where does the rdirst hit P?)
This is solved by finding the smallest valud,df,, intheList . The hit spot is, as alway&,+ ¢ ty,.

The line clipping problem.

For this we need the sequencé-itervals in which the ray is insid® This requires sortintpeList

and then taking thievalues in pairs. The ray entd?st the first time in each pair, and exits frémat the
second time of each pair.

Example 4.9.2. ClipAB to polygonP. Suppose the line to be clippedAB as shown in Figure 4.51, for
whichA = (1, 1) and = (8, 2).

Po=(3,2) (6,2) ©2)
B

(6!-1)
Figure 4.51. Clipping a line against a polygon.

P is given by the vertex list: (3, 2), (2, 0), (6, -1), (6, 2), (4, 1). Taking edgdia turn we get for the
values oft andu at the intersections:

edge u t
0 0.3846 0.2308
1 -0.727 -0.2727
2 0.9048 0.7142
3 0.4 0.6

Hill - Chapter 4 09/23/99 page 48



4 0.375 0.375

The hit with edge 1 occurs tabutside of [0,1] so it is discarded. We sort the remaitxvajues and arrive
at the sorted hit list: {0.2308, 0.375, 0.6, 0.7142}. Thus the ray dntEis= 0.2308, exits it at= 0.375,
re-enters it at = 0.6, and exits it for the last time &t 0.7142 .

Practice exercise 4.9.4. Clip a lineFind the portions of the line from= (1, 3.5) tdB = (9, 3.5) that lie
inside the polygon with vertex list: (2, 4), (3, 1), (4, 4), (3, 3).

4.8.5. More Advanced Clipping.

Clipping algorithms are fundamental to computer graphics, and a nufrésécient algorithms have been
developed. We have examined two approaches to clipping so faConea Sutherlandclipping

algorithm, studied in Chapter 2, clips a line against an aligned rectahgl€yrus-Beck clipper
generalizes this to clipping a line against any convex polygon or polyhedrositiations arise where one
needs more sophisticated clipping. We mention two such methods heeos\atop details of both in Case
Studies at the end of this chapter.

The Sutherland—Hodgmanclipper is similar to the Cyrus—Beck method, performing clippirairesy a
convex polygon. But instead of clipping a single line segment, it clipstae polygon (which needn't be
convex) against the convex polygon. Most importantly, its outpagas gpolygon (or possibly a set of
polygons). It can be important to retain the polygon structure duiippgjra since the clipped polygons
may need to be filled with a pattern or color. This is not possible if theseaf the polygon are clipped
individually.

TheWeiler—Atherton clipping algorithm clips any polygo®, againstny other polygonW, convex or
not. It can output the part Bfthat lies insid&V (interior clipping ) or the part oP that lies outside W
(exterior clipping). In addition, botH? andW can have “holes” in them. As might be expected, this
algorithm is somewhat more complex than the others we have examihéd,dower makes it a welcome
addition to one's toolbox in a variety of applications.

4.9. Summary of the Chapter.

Vectors provide a convenient way to express many geometric nsladéiod the operations they support
provide a powerful way to manipulate geometric objects algehsaibédny computer graphics algorithms
are simplified and made more efficient through the use of vectors. Because nwsbperitions are
expressed the same way independent of the dimensionality of théyinglspace, it is possible to derive
results that are equally true in 2D or 3D space.

The dot product of two vectors is a fundamental quantity that simplifids§ the length of a vector and
the angle between two vectors. It can be used to find such thingsaththgonal projection of one vector
onto another, the location of the center of the excircle of three pointd)edutection of a reflected ray. It
is often used to test whether two vectors are orthogonal to one rrasitienore generally to test when
they are pointing less than, or more thar,fe@im each other. It is also useful to work with a 2D veator
that lies 98 to the left of a given vectar. In particular the dot produef - b reports useful information
about howa andb are disposed relative to each other.

The cross product also reveals information about the angle betweerdtors in 3D, and in addition
evaluates to a vector that is perpendicular to them both. It isusfeghto find a vector that is normal to a
plane.

In the process of developing an algorithm it is crucial to have asmrapresentation of the graphical
objects involved. The two principal forms are the parametric septation, and the implicit form. The
parametric representation “visits” each of the points on the objecpasameter is made to vary, so the
parameter “indexes into” different points on the object. The infiticn expresses an equation that all
points on the object, and only those, must satisfy. It is often givée ifotmf(x, y) = 0 in 2D, orf(x, y, 2

= 0in 3D, wherd() is some function. The value f§j for a given point not only tells when the point is on

Hill - Chapter 4 09/23/99 page 49



the object, but when a point lies off of the object the sidf) afan reveal omvhichside of the object the
point lies. In this chapter we addressed finding representations nfdHfundamental “flat” objects in
graphics: lines and planes. For such objects both the parametric formieit form are linear in their
arguments. The implicit form can be revealingly written as therdolugt of a normal vector and a vector
lying within the object.

It is possible to form arbitrary linear combinations of vectorsnbtiof points. For points only affine
combinations are allowed, or else chaos reigns if the underlyordinate system is ever altered, as it
frequently is in graphics. Affine combinations of points areulgefgraphics, and we showed that they
form the basis of “tweening” for animations and for Bezier curves.

The parametric form of a line or ray is particularly useful for saskg as finding where two lines intersect
or where a ray hits a polygon or polyhedron. These problems are amipiorthemselves, and they also
underlie clipping algorithms that are so prominent in graphics. ThesBeck clipper, which finds where
a line expressed parametrically shares the same point in spaceeagrgplame expressed implicitly,
addresses a larger class of problems than the Cohen Sutherland clippaptr 2, and will be seen in
action in several contexts later.

In the Case Studies that are presented next, the vector toolsp@evetofar are applied to some
interesting graphics situations, and their power is seen even more dldaether or not you intend to
carry out the required programming to implement these majeqts, it is valuable to read through them
and imagine what process you would pursue to solve them.

4.10. Case Studies.

4.10.1. Case Study 4.1: Animation with Tweening.
(Level of Effort: 11.)) Devise two interesting polylines, suchfeandB as shown in Figure 4.52. Ensure
thatA andB have the same number of points, perhaps by adding an artificial extringbiatop segment

of B.
Ay

PAAN
/

g

Y,
/

Figure 4.52. Tweening two polylines.

a). Develop a routine similar to routideawTween(A, B, n, t) of Figure 4.23 that draws the tween
att of the polylinesA andB.

b). Develop a routine that draws a sequence of “tweens” betvardB ast varies from 0 to 1, and
experiment with itUse the double buffering offered by OpenGL to make the animation smooth

). Extendthe routine so that aftert increases gradually from O to 1 it decreases gradually back to O

and then repeats, so the animation repeatedly shawstating intoB then back int@\. This should
continue until a key is pressed.

Hill - Chapter 4 09/23/99 page 50



d). Arrange so that the user can enter two polylines with the mollsgjifig which the polylines are
tweened as just described. The user presses key ‘A’ and begins to lay dotsrigofmrm polylineA, then
presses key ‘B’ and lays down the points for polyline B. Pressingrifiitates that process and begins the
tweening, which continues until the user types ‘Q’. Allow for tagsecwhere the user inputs a different
number of points foA than forB: your program automatically creates the required number of jgeints
along line segments (perhaps at their midpoints) of the polyliriednéawer points.

4.10.2. Case Study 4.2. Circles Galore.

(Level of Effort: Il.). Write an application that allows thesuso input the points of a triangle with a mouse.
The program then draws the triangle along witlinigeribed circle, excircle and9-point circle, each in a
different color. Arrange matters so the user can then move wedfitke tirangle to new locations with the
mouse, whereupon the new triangle with its three circles are redrawn.

We saw how to draw the excircle in Section 4.6.1. Here we show how to findgthibdal circle and the
nine-point circle.

The inscribed circle This is the circle that just snugs up inside the given triangle, andjentaio all
three sides3. Figure 4.53a shows a triangl&C along with its inscribed circle.

a). b).
A
T
R
C Lp
S
B B
Lp

Figure 4.53. The inscribed circle ABCis the excircle oRST

As was the case with the excircle, the hard part is finding the centeriokthribed circle. A
straightforward methdd recognizes that the inscribed circlea@dCis simply the excircle of a different set
of three pointsRSTas shown in Figure 4.53a.

We need only find the locations Bf S andT and then use the excircle method of Section 4.6.1. Figure
4.53b shows the distancesR)fS andT from A, B, andC. By the symmetry of a circle the distandgs R
and B - S|must be equal, and there are two other pairs of lines that have théesath. We therefore
have (using the definitions of Equation 4.55dpb, andc):

[a] =Ly + L, b] =Ly + L, [c] =L + L

which can be combined to solve for Bnd L

2La=Rl+Fl-bl.  2Ly=lal+p| -l

solL, andLy are now known. ThuR, S andT are given by:

13Note: finding the incircle also solves the problem of finding the entiele that is tangent to 3 noncollinear lines in
the plane.

14 Suggested by Russell Swan.

Hill - Chapter 4 09/23/99 page 51



a

R=A+L,
|al
S—B+L£ (4.65)
“Ib] '
C
T=A- LL—
|c|

(Check these expressions!)

Encapsulate the calculationifS, andT from A, B, andC in a simple routine having usage
getTangentPoints(A, B, C, R, S, T). The advantage here is that if we have a routine
excircle() that takes three points and computes the center and radius of the exdinele lgthem,
we can use thgameroutine to find the inscribed circle. Experiment with these tools.

The nine-point circle.

For any triangle, there are nine particularly distinguishedtgoi

* the midpoints of the 3 sides;

* the feet of the 3 altitudes;

« the midpoints of the lines joining the orthocenter (where thiéitBdes meet) to the vertices.

Remarkably, a single circle passes through all nine points!d=iyg4 showshe 9-point circlel® for an
example triangle. The nine-point circle is perhaps most easilyrdas the excircle of the midpoints of the
sides of the triangle.

Figure 4.54. The 9-point circle.
4.10.3. Case Study 4.3. Is point Q inside convex polygon P?

(Level of Effort: I.) Suppose you are given the specification afrevex polygonpP. Then given a poin®
you are asked to determine whether or@dies insideP. But from the discussion on convex polygons in
Section 4.8.1 we know this is equivalent to asking whé&hlezs on the inside half spaceefery

bounding line oP. For each bounding linlg we need only test whether the vedfor P, is more than 90
away from the outward pointing normal.

Fact:Qlies inPif (Q-P)-n<0 fori=0, 1, ...N-1. (4.66)
Figure 4.55 illustrates the test for the particular bounding lineptieses through; andP,. For the case of

pointQ, which lies inside, the angle witm; is greater than §0For the case of poif@ which lies
outsideP the angle is less than®0

15This circle is the first really exciting one to appear in any couse on elemeet@metry.” Daniel Pedo€ircles
Pergamon Press, New York, 1957

Hill - Chapter 4 09/23/99 page 52



Figure 4.55. Is poind inside polygorP?

Write and test a program that allows the user to:

a). lay down the vertices of a convex polygBn,with the mouse;

b). successively lay down test points, Q, with the mouse;

c). prints “is inside” or “is not inside” depending on whether the @iig or is not insidé.

4.10.4. Case Study 4.4. Reflections in a Chamber (2D Ray Tracing)

(Level of Effort: Il.) This case study applies some of the tools and idteaduced in this chapter to a
fascinating yet simple simulation. The simulation performs a &firdy tracing, based in a 2D world for
easy visualization. Three dimensional ray tracing is discussed inidetdiaipter 14.

This simulation traces the path of a single tiny "pinball” as it basioéfevarious walls inside a “chamber.”
Figure 4.56a shows a cross section of a convex chamibieat has six walls and contains three convex
“pillars”. The pinball begins at poirBand moves in a straight line in directionntil it hits a barrier,
whereupon it “reflects” off the barrier and moves in a new directigainan a straight line. It continues to
do this forever. Figure 4.56b shows an example of the polyline pathrénatraverses.

) b)
s\ ‘A‘ Q

Figure 4.56. A 2D ray-tracing experiment.

For any given positio®s and directiorc of the ray, tracing its path requires two operations:

« Finding the first wall of the chamber “hit” by the ray;
* Finding the new direction the ray will take as it reflects off tings line.

Both of these operations have been discussed in the chapter. Nai® ¢laah new ray is created, its start
point is always on some wall, the “hit point” of the previously hit wall.

We represent the chamber by a list of convex polygaitiar o, pillar,, ..., and arrange thptllar is the
“chamber” inside which the action takes place. The pillars are storadable arrays of points. For each
ray beginning aSand moving in direction, the entire array of pillars is scanned, and the intersection of
the ray with each pillar is determined. This test is done usingythus-®eck algorithm of Section 4.8.3. If

Hill - Chapter 4 09/23/99 page 53



there is a hit with a pillar, the “hit time” is taken to be the time atlwthe ray “enters” the pillar. We
encapsulate this test in the routine:

int rayHit(Ray thisRay, int which, double& tHit);

that calculates the hit tintelit  of the raythisRay againshpillarnich and returns 1 if the ray hits the
pillar, and 0 if it misses. A suitable type feay is struct{Point2 startPt; Vector2 dir;}
or the corresponding class; it captures the starting f@nd directiorc of the ray.

We want to know which pillar the ray hits first. This is done bgpkeg track of the earliest hit time as we
scan through the list of pillars. Only positive hit times need to be anesidnegative hit times correspond
to hits at spots in the opposite direction from the ray’s travel. Wieeparliest hit point is found, the ray is
drawn fromSto it.

We must find the direction of the reflected ray as it moves awaythtatest hit spot. The directiahof
the reflected ray is given in terms of the directarf the incident ray by Equation 4.27:

ct=c- 2(c>x)n (4.67)

wheren is the unit normal to the wall of the pillar that was hit. If a pillaide the chamber was hit we
use the outward pointing normal; if the chamber itself was hit, we use tasdipainting normal.

Write and exercise a program that draws the path of a ray as it refleitts offier walls of chamb&¥ and
the walls of the convex pillars inside the chamber. Arrange to read isttbépillars from an external file
and to have the user specify the ray's starting positioniegrdidn. (Also see Chapter 7 for the
“elliptipool” 2D ray tracing simulation.)

4.10.5. Case Study 4.5. Cyrus-Beck Clipping.

(Level of Effort: 1l.) Write and exercise a program that clips a colleaifdimnes against a convex polygon.
The user specifies the polygon by laying down a sequence of pointb&itmouse (pressing key ‘C’ to
terminate the polygon and begin clipping). Then a sequengeesfik generated, each having randomly
chosen end points.

For each such line, the whole line is first drawn in reeh ttne portion that lies inside the polygon is drawn
in blue.

4.10.6. Case Study 4.6. Clipping a polygon against a convex polygon —

Sutherland Hodgman Clipping.

(Level of Effort: Ill.) Clipping algorithms studied so far clip indival line segments against polygons.
When instead polygonis clipped against a window it can be fragmented into several paygahe

clipping process, as suggested in Figure 4.57a. The polygon may nesiilleallwith a color or pattern,
which means that each of the clipped fragments must be associdteédawipattern, as suggested in Figure
4.57b. Therefore a clipping algorithm must keep track of edigesd, and so on, and must fashion a new
polygon (or polygons) out of the original one. It is also importantahatigorithm not retain extraneous
edges such dx as part of the new polygon, as such edges would be displayed whehdhlgyis fact be
invisible.

Hill - Chapter 4 09/23/99 page 54



Subject
Polygon

Window

Figure 4.57. Clipping a polygon against a polygon.

The polygon to be clipped will be called the “subject” polygarifhe polygon against whichis clipped
will be called the “clip” polygonC. How do we clip polygors, represented by a vertex list, against
polygonC, to generate a collection of vertex lists that properly représersiet of clipped polygons?

We examine here thutherland—Hodgmanclipping algorithm This method is quite simple and clips any
subject polygon (convex or not) against a convex clip polygoe .aldorithm can leave extraneous edges
that must be removed later.

Because of the many different cases that can arise, we need an organized metregrfgrttack of the
clipping process. The Sutherland—Hodgman algorithm takes a divide-agdec@pproach: It breaks a
difficult problem into a set of simpler ones. It is built on the Cyrus-Bepkaggh, but must work with a
list of vertices - that represent a polygon - rather than a simple pair aegerti

Like the Cyrus-Beck algorithm this method clips poly@egainst each bounding line of polygGrin
turn, leaving only the part that is insi@eOnce all of the edges 6fhave been used this wawill have
been clipped again&t as desired. Figure 4.58 shows the algorithm in action for

1st edition Figure A6.2 on page 716.

Figure 4.58. Sutherland—Hodgman polygon clipping.

a seven-sided subject polyg8mand a rectangular clip polyg@ We will describe each step in the process
for this exampleSis characterized by the vertex lisb ¢ d e f gSis clipped against the top, right, bottom,
and left edges df in turn, and at each stage a new list of vertices is generatethfeartd. This list
describes one or more polygons and is passed along as thet pahjgon for clipping against the next
edge ofC.

The basic operation, then, is to clip the polygon(s) described by an arpex listV against the current

clip edge ofC and produce an output vertex list. To do this, travérderming successive edges with pairs
of adjacent vertices. Each such e#igeas a first and a second endpoint we €ahdp, respectively. There
are four possible situations for endpoistsndp: sandp can both be inside, both can be outside, or they
can be on opposite sides of the clip edge. In each case, certain points atreoqaippended onto) the new
vertex list, as shown in Figure 4.59.

Hill - Chapter 4 09/23/99 page 55



a). inside outside b) inside outside
I p
p S
S
o). inside outside d). inside outside
S
p i S

Figure 4.59. Four cases for each edge of S.

a. Bothsandp are insidep is output.

b. sis inside angb is outside. Find the intersectiband output it.

c. Bothsandp are outside. Nothing is output.

d. sis outside angb is inside. Find intersectianand output and them.

Now follow the progress of the Sutherland—Hodgman algorithm in Figure 4.88ideo clippingS against
the top edge of. The input vertex list for this phasead cd ef g. The first edge from the list is taken for
convenience as that frogto a, the edge that “wraps around” from the end of the list to its first element.
Thus pointsis g and poinfp is a here. Edge, a, meaning the edge fromto a, intersects the clip edge at a
new point 1", which is output to the new list. (The output list from each stagfegralgorithm is shown
below the subsequent figure in Figure 4.58.) The next edge in the ingsilib. Since both endpoints are
above the clipping edge, nothing is output. The third dolge,generates two output points, 2 an@nd

the fourth edgeg, d, outputs point. This process continues until the last edgg, is tested, producing
The new vertex list for the next clipping stage is therefore &l 2f g. It is illuminating to follow the
example in Figure 4.58 carefully in its entirety to see how the algoritbrksw

Notice that extraneous edges 3, 6 and 9, 10 are formed that connect the tlyae fopagments formed in
the clipping algorithm. Such edges can cause problems in some polygon fglimighahs. It is possible
but not trivial to remove these offending edges [sutherland74].

Task: Implement the Sutherland-Hodgman clipping algorithm, and test it oriedyval sample polygons.
The user lays down the convex polygomvith the mouse, then lays down the subject polygonith the
mouse. It is drawn in red as it is being laid down. Clipping is pegformed, and the clipped polygon(s)
are drawn in blue.

4.10.7. Case Study 4.7. Clipping a Polygon against another — Weiler Atherton
Clipping.

(Level of Effort: Ill). This method provides the most generalpgifig mechanism of all we have studied. It
clips any subject polygon against any (possibly non-convex) clip palyidanpolygons may even contain
holes.

Hill - Chapter 4 09/23/99 page 56



The Sutherland-Hodgman algorithm examined in Case Study 4.6 exploits tlegitpofthe clipping
polygon through the use of inside-outside half-spaces. In some applicatiich as hidden surface
removal and rendering shadows, however, one must clip one concayerpabainst another. Clipping is
more complex in such cases. The Weiler—Atherton approach clips agppalgainst any other, even
when they have holes. It also allows one to form the set theonitic, intersection, anddifference of

two polygons, as we discuss in Case Study 4.8.

We start with a simple example, shown in Figure 4.60. Here two concagmps|SUBJandCLIP, are
represented by the vertex listg, §, ¢, d) and @, B, C, D), respectively. We adopt the convention here of
listing vertices so that the interior of the polygon is to the rifleach edge as we move cyclically from
vertex to vertex through the list. For instance, the interi@UmJlies to the right of the edge frootod

and to the right of that fromito a. This is akin to listing vertices in “clockwise” order.

D
Figure 4.60 .Weiler—Atherton clipping.

All of the intersections of the two polygons are identified and sioradist (see later). For the example
here, there are six such intersections. Now toSliiBJagainsiCLIP, traverse aroun8UBJin the

“forward direction” (i.e., so that its interior is to the righttilan “entering” intersection is found: one for
which SUBJis moving from the outside to the insideCifIP. Here we first find 1, and it goes to an output
list that records the clipped polygon(s).

The process is now simple to state in geometric terms: TraverseSiiBigmoving segment by segment,
until an intersection is encountered (2 in the example). The idea nowuis @way from followingsUBJ
and to followCLIP instead. There are two ways to turn. Turn so@a4P is traversed in its forward
direction. This keeps the inside of b@&k/BJandCLIP to the right. Upon finding an intersection, turn and
follow alongSUBJin its forward direction, and so on. Each vertex or intersection etered is put on the
output list. Repeat the “turn and jump between polygons” processrgitag each polygon in its forward
direction, until the first vertex is revisited. The output list at pluimt consists of (1, 2, B).

Now check for any other entering intersectionS0BJ Number 3 is found and the process repeats,
generating output list (3, 4, 5, 6). Further checks for enteringséttons show that they have all been
visited, so the clipping process terminates, yielding the two polydobs2, B) and (3, 4, 5, 6). An
organized way to implement this “follow in the forward direction and juprptess is to build the two lists

SUBJLISTa, 1,b, 2,¢, 3,4,d, 5,6
CLIPLIST A/ 6, 3,2B,1,C,D, 4,5

that traverse each polygon (so that its interior is to th&)régid list both vertices and intersections in the
order they are encountered. (What should be done if no intersections areddetteen the two

Hill - Chapter 4 09/23/99 page 57



polygons?) Therefore traversing a polygon amounts to traversistg @nld jumping between polygons is
effected by jumping between lists.

Notice that once the lists are available, there is very little geometng iprocess—ijust a “point outside
polygon” test to properly identify an entering vertex. The profection in which to traverse each
polygon is embedded in the ordering of its list. For the preceding egathplprogress of the algorithm is
traced in Figure 4.61.

start restart
a 1 b 2 (o 3 4 d 5 6
SUB_LIST: o
CLIP_LIST: o
A 6 3 2 B 1 C D 4 5
_ \
visited visited

® = output the point
Figure 4.61. Applying the Weiler—Atherton method.

A more complex example involving polygons with holes is showngdur€i4.62. The

re|A6.6

&r

Figure 4.62. Weiler—Atherton clipping: polygons with holes.

vertices that describe holes are also listed in order sucth#hatterior of the polygon lies to the right of an
edge. (For holes this is sometimes called “counterclockwise ordére"same rule is used as earlier: Turn
and follow the other polygon in its forward direction. Beginning \gititering intersectiof, the polygon

(1, 2, 3, 4, 5i, 6,H) is formed. Then, starting with entering intersection 7, thegpoly(7, 8, 9¢, 10,F) is
created. What entering intersection should be used to generétedhmolygon? It is a valuable exercise to
build SUBJLISTandCLIPLISTand to trace through the operation of the method for this example.

As with many algorithms that base decisions on intersections, we namsinexthe preceding method for
cases where edges@EIP andSUBJare parallel and overlap over a finite segment.

Task: Implement the Weiler-Atherton clipping algorithm, and test itarariety of polygons. Generate
SUBJandCLIP polygons, either in files or by letting the user lay down polygotis tive mouse. In your
implementation carefully consider how the algorithm will operate in situasiacts as the following:

* Some edges UBJandCLIP are parallel and overlap over a finite segment,

» SUBJor CLIP or both are nonsimple polygons,

Hill - Chapter 4 09/23/99 page 58



» Some edges GUBJandCLIP overlap only at their endpoints,
» CLIP andSUBJare disjoint,
» SUBJlies entirely within a hole oCLIP.

4.10.8. Case Study 4.8. Boolean Operations on Polygons.

(Level of Effort: I11.) If we view polygons as sets of points (the set ofaifits on the boundary or in the
interior of the polygon), then the result of the previous cligmiperation is thatersection of the two
polygons, the set of all points that are in bGtHP andSUBJ The polygons output by the algorithm
consist of points that lie both within the origirgllBJand within theCLIP polygons. Here we generalize
from intersections to other set theoretic operations on polygons,oafied “Boolean” operations. Such
operations arise frequently in modeling [mortenson85] as well as inigsgiske Chapter 14). In general,
for any two sets of points A and B, the three set theoretic operations are

« intersection:AC B = {all points in bothA andB}
« union: AE B= {all points inA or inB or both}
« difference:A - B= {all points inA but notB}

with a similar definition for the set differenBe- A. Examples of these sets are shown in Figure 4.63.

AXB A+B A-B B-A
a a
A

Figure 4.63. Polygons formed by boolean operations on polygons.

It is not hard to adjust the Weiler-Atherton method, which alreadgnpes intersections, to perform the
union and difference operations on polygénandB.

1. Computing the union of A and Braverse around in the forward direction until an exiting intersection
is found: one for whicl\ is moving from the inside to the outsideBofOutput the intersection and traverse
alongA until another intersection witB is found. Now turn to follovB in its forward direction. At each
subsequent intersection, output the vertex and turn to followttiee polygon in its forward direction.
Upon returning to the initial vertex, look for other exiting intetisms that have not yet been visited.

2. Computing the difference A - B(outside clippiMyhereas finding the intersection of two polygons
results in clipping one against the other, the difference operation "shagld polygon from another. That
is, the differenc&UBJ- CLIP consists of the parts 8UBJthat lie outsideCLIP. No parts ofSUBJare
drawn that lie within the border GfLIP, so the region defined IGLIP is effectively protected, or
shielded.

Traverse around until an entering intersection inBis found. Turn tdB, following it in the reverse
direction, (so thaB's interior is to the left). Upon reaching another intersectionp jtoA again. At each
intersection, jump to the other polygon, always travergiimgthe forward direction an#é in the reverse
direction. Some examples of forming the union and difference of two pdyare shown in Figure 4.64.
The three set operations generate the following polygons:

POLYA E POLYB:

4, 5,9, h(a hole)
8,B,C,D,1,bcd

2, 3,i,j(ahole)

6,H, E, F, 7,f (a hole)

Hill - Chapter 4 09/23/99 page 59



POLYA - POLYB:
4,5,6H,EF 7,6 8B,CD, 1 a
2,3,k

POLYB - POLYA:
l, b! C! d! 81 519! h! 41A! 31i!j! 2
7,1,6,G

1st edition Figure A6.8.

Figure 4.64. Forming the union and difference of two polygons.

Notice how the holes F, G, H) and k, i, j) in the polygons are properly handled, and that the algorithm
generates holes as needed (holes are polygons listed in counteiszdielsiion).

Task: Adapt the Weiler—Atherton method so that it can form the union andettiferof two polygons, and
exercise your routines on a variety of polygons. GenératadB polygons, either in files or
algorithmically, to assist in the testing. Draw the polygarsdB in two different colors, and the result of
the operation in a third color.

4.11. For Further Reading

Many books provide a good introduction to vectors. A favoritéofmann’s ABOUT VECTORS. The
GRAPHICS GEMS series [gems] provides an excellent source of neasghps and results in vector
arithmetic and geometric algorithms by computer graphics practitioiterse excellent example articles
are Alan Paeth’s “A Half-Angle Identity for Digital Computation: ThesJof/the Half Tangent”
[paeth91], Ron Goldman “Triangles”[goldman90], and Lopez-Lopez's “Tkangevisited” [lopez92].
Two books that delve more deeply into the nature of geometric thlgerare Moret and Shapiro’s
ALGORITHMS FROM P TO NP [moret91] and Preparata and Shamos’s COMPUTATIONAL
GEOMETRY, AN INTRODUCTION [preparata85].

Hill - Chapter 4 09/23/99 page 60



Chapter 5. Transformations of Objects

“Minus times minus is plus, the reason for this we need not discuss
W.H.Auden

“If | eat one of these cakes", she thought,
"it's sure to make some change in my size."
So she swallowed one ...
and was delighted to find that she began shrinking directly.
Lewis Carroll, Alice in Wonderland

Many of the brightly colored tile-covered walls and floors of the
Alhambra in Spain show us that the Moors were masters
in the art of filling a plane with similar interlocking figures,
bordering each other without gaps.
What a pity that their religion forbade them to make images!
M. C. Escher

Goals of the Chapter
- Develop tools for transforming one picture into another.
Introduce the fundamental concepts of affine transformations, whiabrmecbmbinations of rotations,
scalings, and translations.
Develop functions that apply affine transformations to objects in atenprograms
Develop tools for transforming coordinate frames.
See how to set up a camera to render a 3D scene using OpenGL
Learn to design scenes in the Scene Design language SDL, and to write pribgitaread SDL files and
draw the scenes they describe.

Preview.
Section 5.1 motivates the use of 2D and 3D transformations in cangpaphics, and sets up some basic
definitions. Section 5.2 defines 2D affine transformations aradbkésites terminology for them in terms of a
matrix. The notation of coordinate frames is used to keep clear whatsddnjedieing altered and how. The
section shows how elementary affine transformations can perform scatatir, translation, and shearing.
Section 5.2.5 shows that you can combine as many affine transfornmedigos wish, and the result is another
affine transformation, also characterized by a matrix. Se&ti2.7 discusses key properties of all affine
transformations — most notably that they preserve straight [ieases, and parallelism — and shows why they
are so prevalent in computer graphics.

Section 5.3 extends these ideas to 3D affine transformations, and khoel$ of the basic properties hold here
as well. 3D transformations are more complex than 2D ones, howeglanag difficult to visualize,

particularly when it comes to 3D rotations. So special attention is pdiestwibing and combining various
rotations.

Section 5.4 discusses the relationship between transformintg poid transforming coordinate systems. Section
5.5 shows how transformations are managed within a program wheGDjzeavailable, and how

transformations can greatly simplify many operations commonly neededaplzicy program. Modeling
transformations and the use of the “current transformation” are motivatedjtha number of examples.

Section 5.6 discusses modeling 3D scenes and drawing them using Opeft@iera” is defined that is
positioned and oriented so that it takes the desired snapshetsafane. The section discusses how
transformations are used to size and position objects as desaagene. Some example 3D scenes are modeled
and rendered, and the code required to do it is examined. This seatianralduces a Scene Description
language, SDL, and shows how to write an application that canaimagcene described in the language. This

Chap 5. Transformations 9/28/99 page 1



requires the development of a number of classes to support readipgraimg SDL files, and creating lists of
objects that can be rendered. These classes are available frionokteweb site.

The chapter ends with a number of Case Studies that elaborate on theéeasiand provide opportunities to
work with affine transformations in graphics programs. One stagly asks you to develop routines that perform
transformations when OpenGL is not available. Also described theemasgs to decompose an affine
transformation into its elementary operations, and the developrariast routine to draw arcs of circles that
capitalizes on the equivalence between a rotation and three successise shear

5.1. Introduction.
The main goal in this chapter is to develop techniques for workithgawparticularly powerful family of
transformations calledffine transformationsboth with pencil and paper and in a computer program, with and
without OpenGL. These transformations are a fundamental corner$tooramuter graphics, and are central to
OpenGL as well as most other graphics systems. They are also a $aliffocgutty for many programmers
because it is often difficult to get them right.

One particularly delicate area is the confusion of points and veBmirgs and vectors seem very similar, and are
often expressed in a program using the same data type, parlgtps three numbers like (3.0, 2.5, -1.145) to
express them in the current coordinate system. But this practice can leadttw tighs form of serious bugs

that are very difficult to ferret out, principally because points and \&edtorot transform the same way. We need
a way to keep them straight, which is offered by usiydinate frameand appropriate homogeneous
coordinates as introduced in Chapter 4.

5.2. Introduction to Transformations.
The universe is full of magical
things, patiently waiting for
our wits to grow sharper.
E. Phillpotts

We have already seen some examples of transformations, at least in 2D. kr Ghfaptinstance, the window to
viewport transformation was used to scale and translate objeet®diin the world window to their final size and
position in the viewport.

We want to build on those ideas, and gain more flexible controltogesize, orientation, and position of objects
of interest. In the following sections we develop the requireld,tbased on the powerfaffine transformation,
which is a staple in computer graphics. We operate in both two and threesidinsen

Figure 5.1a shows two versions of a simple house, drawn before and dftef gagoints has been transformed.
In this case the house has been scaled down in size, rotated arsmait, and then moved up and to the right.
The overall transformation here is a combination of three more elements: scaling, rotation, and translation.
Figure 5.1b shows a 3D house before and after it is similarly aranefi: each 3D point in the house is subjected
by the transformation to a scaling, a rotation, and a translation.

a). b).

A after \// !
afteZ

before

> before
z X

Figure 5.1. Drawings of objects before and after they are transform

Chap 5. Transformations 9/28/99 page 2



Transformations are very useful in a number of situations:

a). We can compose a “scene” out of a number of objects, as in Figure 5.2bjeatbueh as the arch is most
easily designed (once for all) in its own “master” coordinate system. The sdbea fashioned by placing a
number of “instances” of the arch at different places and with different siziag, the proper transformation for
each.

L |

—— 000000

_—— ™

[FSSSFESSS[SS S s s S s]|

Figure 5.2. Composing a picture from many instances of a simple form.

Figure 5.3 shows a 3D example, where the scene is composed of many ingtanbes that have been scaled
and positioned in a “city”.

Figure 5.3. Composing a 3D scene from primitives.

b). Some objects, such as the snowflake shown in Figure 5.4, edriiaiin symmetries. We can design a single
“motif’ and then fashion the whole shape by appropriate reflectiotegjons, and translations of the motif.

use it 12 times
_—

Figure 5.4. Using a “motif”’ to build up a figure.

¢). A designer may want to view an object from different vantage paintsmake a picture from each one. The
scene can be rotated and viewed with the same camera. But asesliggEgjure 5.5 it's more natural to leave

Chap 5. Transformations 9/28/99 page 3



the scene alone and move the camera to different orientationssitidngs for each snapshot. Positioning and
reorienting a camera can be carried out through the use of 3D affine transfesmatio

@g

Figure 5.5. Viewing a scene from different points of view.

d). In a computer animation several objects must move relative to omerafiom frame to frame This can
be achieved by shifting and rotating their local coordinate systethg asimation proceeds. Figure 5.6
shows an example.

author supplied

Figure 5.6. Animating by transforming shapes.

Where are we headed? Using Transformations with OpenGL.

The first few sections of this chapter present the basic conceptaef éfnsformations, and show how they
produce certain geometric effects such as scaling, rotations, and trasslagith in 2D and 3D space.
Ultimately, of course, the goal is to produce graphical drawings of objettsatve@been transformed to the
proper size, orientation, and position so they produce the desiresl gceumber of graphics platforms,
including OpenGL, provide a “graphics pipeline”, or sequence of tipesathat are applied to all points that are
“sent through it". A drawing is produced by processing each point.

Figure 5.7 shows a simplified view of the OpenGL graphics pipefinepplication “sends it” a sequence of
pointsP; Py, Ps, ... using the commands like the now familiar:

Figure 5.7. The OpenGL pipeline.

glBegin(GL_LINES);
glVertex3f(...); // send P1 through the pipeline
glVertex3f(...); // send P2 through the pipeline
glVertex3f(...); // send P3 through the pipeline

glEnd();
As shown in the figure these points first encounter a transformatiead ¢a# “current transformation” (“CT"),
which alters their values into a different set of points,@a¥,, Qs, .... Just as the original poirRsdescribe

some geometric object, the poi@sdescribe the transformed version of the same object. These points are then
sent through additional steps, and ultimately are used to dedfiméthimage on the display.

Chap 5. Transformations 9/28/99 page 4



The current transformation therefore provides a crucial tobldmtanipulation of graphical objects, and it is
essential for the application programmer to know how to adjust the Giatsthé desired transformations are
produced. After developing the underlying theory of affia@sformations, we turn in Section 5.5 to showing
how this is done.

Object transformations versus coordinate transformations.

There are two ways to view a transformation: astgact transformation or as acoordinate transformation.

An object transformation alters the coordinates of each point on the objettiagdo some rule, leaving the
underlying coordinate system fixed. A coordinate transformatidneseé new coordinate system in terms of the
old one, then represents all of the object’s points in this new systesrtwo views are closely connected, and
each has its advantages, but they are implemented somewhat dfféiénshall first develop the central ideas in
terms of object transformations, and then relate them to coordiaasfommations.

5.2.1. Transforming Points and Objects.
We look here at the general idea of a transformation, and then seetiadiffine transformations.

A transformation alters each poii,in space (2D or 3D) into a new poif@t, using a specific formula or
algorithm. Figure 5.8 shows 2D and 3D examples.

a). b).
YA

o)

\

<V

Figure 5.8. Mapping points into new points.

As Figure 5.8 illustrates, an arbitrary poihin the plane isnappedto Q. We sayQ is theimage of P under the
mappingT. Part a) shows a 2D poiRtbeing mapped to a new poi@t part b) shows a 3D poift being mapped
to a newQ. We transform an object by transforming each of its points, using, of cthessgme functiom() for
each point. We can map whole collections of points at once. The collectionbmighthe points on a line or

circle. Theimageof line L underT , for instance, consists of the images of all the individual pointstof L.

Most mappings of interest are continuous, so the image of a straightdiiiesionnected curve of some shape,
although it's not necessarily a straight line. Affine transformatioowgever, do preserve lines as we shall see: The
image undeil of a straight line is also a straight line. Most of this chapter willsfazuaffine transformations, but
other kinds can be used to create special effects. Figure 5.9, for instansastomplex warping of a figure that
cannot be achieved with an affine transformation. This transfonmatight be used for visual effect, or to
emphasize important features of an object.

old Fig 11.2 Da Vinci warped peculiarly

Figure 5.9. A complex warping of a figure.

To keep things straight we use an explicit coordinate frame when perforamisfprmations. Recall from

Chapter 4 that a coordinate frame consists of a particular goinalled the origin, and some mutually
perpendicular vectors (callé@nd j in the 2D casej, j, andk in the 3D case) that serve as the axes of the
coordinate frame.

IMore formally, if Sis a set of points, itsnageT(S) is the set of all point§(P) whereP is some point irs.

Chap 5. Transformations 9/28/99 page 5



Take the 2D case first, as it is easier to visualize. In whichevedinate frame we are using, poandQ have
the representation® andQ given by:

P Q
P=R Q= Q
1 1

Recall that this means the poRit“is at” locationP = P, i + P, j +J , and similarly forQ. P, andP, are
familiarly called the “coordinates” of P. The transformation operat¢h@®representatio® and produces the
representatioiq) according to some functioy(),

Q, R,
Q =TF (5.1)
1 1

or more succinctly,
Q=T(P). (5.2)

The functionT() could be complicated, as in

Q  cos@ "

In(P,)
y T 1+P2
1 lx

and such transformations might have interesting geometritffaut we restrict ourselves to much simpler
families of functions, those that dieear in P, andP, This property characterizes the affine transformations.

5.2.2. The Affine Transformations.
What is algebra, exactly? Is it those three-cornered things?
J. M. Barrie

Affine transformations are the most common transformations usmhiputer graphics. Among other things they
make it easy to scale, rotate, and reposition figurescéession of affine transformations can easily be combined
into a simple overall affine transformation, and affine transftiona permit a compact matrix representation.
Affine transformations have a simple form: the coordinat€3 afe linear combinations of thosefof

Q  mB+m,B+ my

Q = mE+m,BP+ m, (5:3)
1 1

for some six given constamts;, my, etc.Q, consists of portions of both Bf andP,, and so doe®,. This “cross
fertilization” between th&- andy-components gives rise to rotations and shears.

Chap 5. Transformations 9/28/99 page 6



The affine transformation of Equation 5.3 has a useful matrix regagigenthat helps to organize your thinkifg:

Q m, m, m; B

Qy = my My, My Py (5.4)
1 0 0 1 1

(Just multiply this out to see that it's the same as Equation 5.3. In particatia how the third row of the matrix
forces the third component @fto be 1.) For an affine transformation the third row of the mat@wsys (0, O, 1).

Vectors can be transformed as well as points. Recall that if Wéttas coordinategx andVy then its coordinate
frame representation is a column vector with a third component of 0. When tnaedfoy the same affine
transformation as above the result is

W, m, m, m; V,

\Ny = my M, My Vy (5.5)
0 0 0 1 O

which is clearly another vector: its third component is always 0.

Practice Exercise 5.2.1. Apply the transformationAn affine transformation is specified by the matrix:
3 0 5

-2 1 2.
0O 01
Find the imag& of pointP = (1, 2).
8 3 0 51
Solution: 2 = -2 1 2 2.
1 0O 0 11

5.2.3. Geometric Effects of Elementary 2D Affine Transformations.
What geometric effects are produced by affine transformations? They produsieations of four elementary
transformations: (1) a translation, (2) a scaling, (3) a rotation(gradshear.

Figure 5.10 shows an example of the effect of each kind of transformatioedapgividually.

1% Ed. Figure 11.5

Figure 5.10. Transformations of a map: a) translation, b) sca)mgation, d) shear.

Translation.
You often want to translate a picture into a different position aaphics display. The translation part of the
affine transformation arises from the third column of the matrix

Qx 1 O rnl3 Px
Q =01 m, R (5.6)
1 0O 0 1 1

2See Appendix 2 for a review of matrices.

Chap 5. Transformations 9/28/99 page 7



or simply

Qx Px+n].3
Q = R+my,
1 1

so in ordinary coordinate® = P +d, where “offset vectorti has componentsngs, Mys).
For example, if the offset vector is (2, 3), every point will be alteridamew point that is two units farther to the

right and three units above the original point. The point (1, -5), for icsstésmtransformed into (3, - 2), and the
point (0, 0) is transformed into (2, 3).

Scaling.

A scaling changes the size of a picture and involves two scale fagtansiSy, for thex- andy-coordinates,
respectively:

(Qx. Qy) = (5xPx. SyPy)

Thus the matrix for a scaling by itself is simply

S 0 0
0§ 0 (5.7)
0 0 1

Scaling in this fashion is more accurately caedling about the origin because each poitis movedS times
farther from the origin in the-direction, andsy times farther from the origin in thedirection. If a scale factor is
negative, then there is alsoeadlection about a coordinate axis. Figure 5.11 shows an example in which timgscali
(5 Sy) = (-1, 2) is applied to a collection of points. Each point is both teflezbout thg-axis and scaled by 2 in
they-direction.

AY

¢« o o
. .
. . o o o
. o 4 0. :

. °
. SR

. .

. . o o o
. .
« o o

Figure 5.11. A scaling and a reflection.

There are also “pure” reflections, for which each of the scale factars @ -1. An example is
T(PX, Py) = ('PX, Py) (58)

which produces a mirror image of a picture by “flipping” it horiztptabout they-axis, replacing each
occurrence ok with x. (What is the matrix of this transformation?)

If the two scale factors are the sarBer Sy = S the transformation is aniform scaling, or a magnification
about the origin, with magnification fact&.|If Sis negative, there are reflections about both axes. A point is

Chap 5. Transformations 9/28/99 page 8



moved outward from the origin to a positi@tjmes farther away from the origin. § K 1, the points will be
moved closer to the origin, producing a reduction (or “demagnificatidfy’on the other hand, the scale factors
are not the same, the scaling is calledifferential scaling.

Practice Exercise 5.2.2. Sketch the effedh pure scaling affine transformation uses scale fa8ors3 andS, =

-2. Find the image of each of the three objects in Figure 5.12 under thisrnsetsdn, and sketch them. (Make
use of the facts - to be proved later - that an affine transformationsstnaight lines to straight lines, and ellipses
to ellipses.)

a). b). c).

4 A A

ARVR 1 e
\J 1 > >

Figure 5.12. Objects to be scaled.

Rotation.

A fundamental graphics operation is the rotation of a figuoetad given point through some angle. Figure 5.13
shows a set of points rotated about the origin through an angle 60.

4

y

h

60 )
T
o

Figure 5.13. Rotation of points through an angle of 60°.

\ B

WhenT() is a rotation about the origin, the offset vectas zero and = T(P) has the form

Q =P, cos@) - P,sin(q)

Q =PR,sin(q) +P, cos@)
As we derive next, this form causes positive valueptofperform a counterclockwise (CCW) rotation. In terms
of its matrix form, a pure rotation about the origin is given by

(5.9)

cos@g) - sing) O
sin@) cos@g) O (5.10)
0 0 1

Example 5.2.1Find the transformed poird, caused by rotating = (3, 5) about the origin through an angle of
60 . Solution: For an angle of 60cosf)) = .5 and sind) = .866, and Equation 5.9 yiel@ = (3)(0.5) -
(5)(0.866) = -2.83 andQy = (3)(0.866) + (5).5) = 5.098. Check this on graph paper by swinging an arcoof 60

from (3, 5) and reading off the position of the mapped point. Aleclcnumerically tha® andP are at the same
distance from the origin. (What is this distance?)

Chap 5. Transformations 9/28/99 page 9



Derivation of the Rotation Mapping.

We wish to demonstrate that Equation 5.9 is correct. Figure 5.14 shows fiod/ithe coordinates of a poit
that results from rotating poiftabout the origin through an angje If P is at a distancR from the origin, at
some anglé, then P = (Rcogf ), Rsin(f )). NowQ must be at the same distancd’gsand at anglg + f. Using
trigonometry, the coordinates Qfare

AY

q
< f \ o

Figure 5.14. Derivation of the rotation mapping.

Q. = Rcos@+ f)
Q =Rsin(g+f)

Substitute into this equation the two familiar trigonometric retatio

cos@ +f) = coqq) codf) - sin(q) sin(f)
sin(g+ f) =sin(qg) cogf) + codqq) sin(f)

and usePy = Rcogf) andPy = Rsin(f) to obtain Equation 5.9.

Practice Exercise 5.2.3. Rotate a Pointse Equation 5.9 to find the image of each of the following points afte
rotation about the origin:

a). (2, 3) through an angle of -°45

b). (1, 1) through an angle of - 180

c). (60, 61) through an angle of.4

In each case check the result on graph paper, and compare numericabjetineediof the original point and its
image from the origin.

Solution: a). (3.5355, .7071), b). (-1, -1), c). (55.5987, 65.0368).

Shearing.

An example of shearing is illustrated in Figure 5.15 is a shear “idirection” (or “alongx”). In this case thg-
coordinate of each point is unaffected, whereas e&dordinate is translated by an amount that increases linearly
with y. A shear in the-direction is given by

AY
before after

v

Figure 5.15. An example of shearing.

Q=P +hP

Chap 5. Transformations 9/28/99 page 10



Qy: Py

where the coefficient specifies what fraction of thecoordinate of is to be added to thecoordinate. The
quantityh can be positive or negative. Shearing is sometimes used to maketitaigcdat of regular letters. The
matrix associated with this shear is:

1 h 0
010 (5.11)
00 1

One can also have a shear “along y”, for wi@gtF P, andQ, = g P + P, for some value g, so that the matrix is
given by

(5.12)

o Q
o P O
~ O O

Example 5.2.2 Into which point does (3, 4) shear when .3 in Equation 5.113olution: Q = (3 + (.3)4 , 4) = (4.2, 4).
Example 5.2.3:Letg = 0.2 in Equation 5.12. To what point does (6, - 2) ng&gation: Q = (6, 0.2 - 6 - 2) = (6, - 0.8).

A more general shear “along” an arbitrary line is discussed in@ &tady at the end of the chapter. A notable
feature of a shear is that its matrix has a determinant of 1. As we sehitaitepties that the area of a figure is
unchanged when it is sheared.

Practice Exercise 5.2.4. Shearing LinesConsider the shear for whigh= .4 andh = 0. Experiment with various
sets of three collinear points to build some assurance that the sheiatsdare still collinear. Then, assuming that
lines do shear into lines, determine into what objects the followiegsegments shear:

a. the horizontal segment between ( - 3, 4) and (2, 4);

b. the horizontal segment between (- 3, - 4) and (2, - 4);

c. the vertical segment between (-2, 5) and (- 2, -1);

d. the vertical segment between (2, 5) and (2, - 1);

e. the segment between (- 1, - 2) and (3, 2);

Into what shapes do each of the objects in Figure 5.2.12 shear?

5.2.4. The Inverse of an Affine Transformation
Most affine transformations of interest ax@nsingular, which means that the determinaniin Equation 5.4,

) 3
which evaluates to

detM = m;my, - m,my, (5.13)

is nonzero. Notice that the third columnh\f which represents the amount of translation, does not affect the
determinant. This is a direct consequence of the two zeroes appearing in theatluftc We shall make special
note on those rare occasions that we use singular transforgation

3 see Appendix 2 for a review of determinants.

Chap 5. Transformations 9/28/99 page 11



It is reassuring to be able to undo the effect of a transformatiim isTparticularly easy to do with nonsingular
affine transformations. If poirR is mapped into poin according taQ = MP, simply premultiply both sides by

theinverse of M, denotedM -1, and write
P=M-1Q (5.14)
The inverse oM is given by

M-L :_]_( mp2 ‘m12)
det M\-m21 M1 (5.15)
We therefore obtain the following matrices for the elementary inverse transtorma

* Scaling(useM as found in Equation 5.7):

0

o o M|k

o~ o
= O

* Rotation(useM as found in Equation 5.10):

cosg) sing) O
M= -sin@@) cosg) O

0 0 1
« Shearing(using the version dfl in Equation 5.11):

1 0 O
M'= -h 1 0
0O 0 1
* Translations The inverse transformation simply subtracts the offset rather tharitadd
1 0 -mg,
M*=0 1 - M4
0O 0 1

Practice Exercises.

5.2.5. What Is the Inverse of a RotationBhow that the inverse of a rotation throwpgis a rotation throughg-
Is this reasonable geometrically? Why?

5.2.6. Inverting a Shearls the inverse of a shear also a shear? Show why or why not.

5.2.7. An Inverse Matrix. Compute the inverse of the matrix

3 21
M= -1 1 0.
0 01

4 See Appendix 2 for a review of inverse matrices.

Chap 5. Transformations 9/28/99 page 12



5.2.5. Composing Affine Transformations.
Progress might have been all right once , but it has gone on too long.
Ogden Nash

It's rare that we want to perform just one elementary tramafoon; usually an application requires that we build
a compound transformation out of several elementary ones. For exampigwwant to

e translate by (3, - 4)

« then rotate through 80

* then scale by (2, - 1)

« then translate by (0, 1.5)

« and finally rotate through - 30

How do these individual transformations combine into one overall trarsfiam? The process of applying
several transformations in succession to form one overall traregformis calledcomposing(or concatenating
the transformations. As we shall see, when two affine transformations goesmainthe resulting transformation
is (happily) also affine.

Consider what happens when two 2D transformatibyf9,andT,( ), are composed. As suggested in Figure 5.16,
T,() mapsP into Q, andT,( ) mapsQ into pointW. What is the transformatiofi( ), that maps$ directly intow?
That is, what is the nature bf = T,(Q) = T(T,(P))?

4 T10 Q

" \Tvz()
\/'.W

T0

>

Figure 5.16. The composition of two transformations.

Suppose the two transformations are represented by theeBM and M2 ThusP is first transformed to the
point M P which is then transformed ﬂM (M P) By associativity this is Justl\(l2 M )P and so we have

W= MP (5.16)
where the overall transformation is represented by the single matrix
M= M, M,. (5.17)

When homogeneous coordinates are used, composing affine neatsfms is accomplished by simple matrix
multiplication. Notice that the matrices appearamerseorder to that in which the transformations are applied: if
we first applyT; with matrix M,, and then apply, with matrix M, to the result, the overall transformation has

matrix M, M, with the “second” matrix appearing first in the product as you read &frolright. (Just the
opposite order will be seen when we transform coordinate systems.)

By applying the same reasoning, any number of affine transformatéonbe composed simply by multiplying
their associated matrices. In this way, transformations based on margrhiccession of rotations, scalings,
shears, and translations can be formed and captured in a single matrix.

Chap 5. Transformations 9/28/99 page 13



Example 5.2.4. Build oneBuild a transformation that

a). rotates through 45 degrees;

b). then scales inby 1.5 and iry by - 2;

¢). then translates through (3, 5).

Find the image under this transformation of the point (1,2).

Solution: Construct the three matrices and multiply them in the proper oidgroffie last, etc.) to form:

1 0 315 0 0 .707 -.707 O 106 -106 3
0150 -2 0 .70r .707 0= -1414 - 1.414 5
0010 O 1 O 0 1 0 0 1

Now to transform point (1, 2), enlarge it to the triple (1, 2, 1), multiply thle composite matrix to obtain (1.94,
0.758, 1), and drop the one to form the image point (1.94, 0.758). dtrigdtive to use graph paper, and to
perform each of this transformations in turn to see how (1, 2) ipedap

5.2.6. Examples of Composing 2D Transformations.
Art is the imposing of a pattern on experience,
and our aesthetic enjoyment is recognition of the pattern.
Alfred North Whitehead

We examine some important examples of composing 2D transformations, amevdbeyhbehave.

Example 5.2.5. Rotating About an Arbitrary Point.

So far all rotations have been about the origin. But suppose wenstslad to rotate points about some other
point in the plane. As suggested in Figure 5.17, the desired “pivot”ipairt (Vx, Vi), and we wish to rotate
points such aB through angle to positionQ. To do this we must relate the rotation abéubd an elementary
rotation about the origin.

'y

4.

>

Figure 5.17. Rotation about a point.

Figure 5.2.17 shows that if we first translate all points soMftaincides with the origin, then a rotation about the
origin (which map$’ to Q') will be appropriate. Once done, the whole plane is shifted backtre¥ to its
original location. The rotation therefore consists of the followimgetelementary transformations:

1. Translate poinP through vector = (-Vy, -Vy):

2. Rotate about the origin through angte
3. TranslateP back througtv.

Creating a matrix for each elementary transformation, and multipllygrg out produces:
1 0V, cosg) -sing) 0 1 0 -V, cos@) - sing) d,

0 1V, sin@ cosg) 0 0 1 -V, = sin[g) cosf) d,
0 0 1 0 0 1 00 1 0 0 1

Chap 5. Transformations 9/28/99 page 14



where the overall translation components are

d, =- cos@ N, + sinq ¥, +V,
d, =-sin@)V,- cos@ M+ V,

Because the sant@gq) andsin(q) terms appear in this result as in a rotation about the origin,enthaea
rotation about an arbitrary point is equivalent to a rotation aboutitjie followed by a complicated translation
through ¢, d,).

As a specific example, we find the transformation that rotates points IthB@ngbout (-2, 3), and determine to

which point the point (1, 2) maps. A%Bmtation useso0gq) = 0.866 andin(g) = 0.5. The offset vector is then
(1.232, 1.402), and so the transformation applied to any gney() is

Qx = 0.866Py - 0.5Py + 1.232
Qy = 0.5Px + 0.866Py + 1.402

Applying this to (1, 2) yields (1.098, 3.634). This is the correctl,e®s can be checked by sketching it on graph
paper. (Do it!)

Example 5.2.6. Scaling and Shearing about arbitrary “pivot” points.

In a similar manner we often want to scale all points about some pindtgtieer than the origin. Because the
elementary scaling operation of Equation 5.13 scales points &lgoortigin, we do the same “shift-transform-
unshift” sequence as for rotations. This and generalizing tregigly operation are explored in the exercises.

Example 5.2.7. Reflections about a tilted line.

Consider the line through the origin that makes an andiendth thex-axis, as shown in Figure 5.18. Pofat
reflects into poinB, and each house shown reflects into the other. We want to develop the tnatisfothat
reflects any poinP about this axis, to produce pof@t Is this an affine transformation?

A
a0
<> g ceecto”
== T\ .8
3 b
N

Figure 5.18. Reflecting about a tilted axis.

To show that it is affine, we build it out of three parts:

« Arotation through angleb- (so the axis coincides with tleaxis);
» Areflection about th&-axis;
« Arotation back througly that “restores” the axis.

Each of these is represented by a matrix, so the overall trangtorisagiven by the product of the three

matrices, so its affine. Check that each of the steps is properly represented in the follovaagrihtrices, and
that the product is also correct:

Chap 5. Transformations 9/28/99 page 15



c s01 0 0c -s0 c’-¢ -2 O
-s ¢c00-10s ¢c 0= -2s ¢ ¢ 0
O 010 O 10 0 1 0 0 1

wherec stands focogb) ands for sin(b). Using trigonometric identities, the final matrix can be writtdre¢k
this out!)

cos@Rb) singb) O
sinb) - cos@b) O {areflection about the axis at angie (5.18)
0 0 1

This has the general look of a rotation matrix, except the angle hasdwg#addand minus signs have crept into
the second column. But in fact it is the matrix for a reflection about theaaigyleb.

Practice Exercises.
Exercise 5.2.8. The classic: the Window to Viewport Transformation.
We developed this transformation in Chapter 3. Rewriting Equation &2 icurrent notation we have:

A0 C
M= 0 B D
0 0 1

where the ingredient, B, C, andD depend on the window and viewport and are given in Equation 3.3. Show
that this transformation is composed of:

A translation through W., -W.b) to place the lower left corner of the window at the origin;

A scaling by A, B) to size things.

A translation through\(l, V.b) to move the corner of the viewport to the desired position.
5.2.9. Alternative Form for a Rotation About a Point.Show that the transformation of Figure 5.17 can be
written out as
Qx =cogq)(Px - Vx) - sin(a)(Py - Vy) + Vx
Qy = sin@)(Px - Vx) + coqa)(Py - Vy) +Vy
This form clearly reveals that the point is first translated Wy, (-Vy), rotated, and then translated Wy,(Vy).
5.2.10. Where does it end upWhere is the point (8, 9) after it is rotated throughaibut the point (3, 1)? Find
theM matrix.
5.2.11. Seeing it two way©n graph paper place poiat= (4, 7) and the resu® of rotatingP aboutV = (5, 4)
through 48. Now rotateP about the origin through 4%o produceQ’, which is clearly different fron®. The
difference between them ¢ - VM. Show the poinV - VM in the graph, and check tHat- Q' equalsV - VM.
5.2.12. What if the axis doesn’t go through the origin¥ind the affine transformation that produces a reflection
about the line given parametrically bt) = A + bt. Show that it reduces to the result in Equation 5.20 when
bt does pass through the origin.
5.2.13. Reflection ik =y. Show that a reflection about the lire y is equivalent to a reflection in x followed
by a 98 rotation.
5.2.14. Scaling About an Arbitrary Point. Fashion the affine transformation that scales points about a pivot
point, (Vx, V). Test the overall transformation on some sample points, to confitrththscaling operation is

correct. Compare this with the transformation for rotatioruahgivot point.
5.2.15. Shearing Along a Tilted AxisFashion the transformation that shears a point along the axis described by

vectoru tilted at angleg, as shown in Figure 5.19. Poldis shifted alongi an amount that is fractidnof the
displacemend of P from the axis.

Chap 5. Transformations 9/28/99 page 16



Figure 5.19. Shearing along a tilted axis.
5.2.16. Transforming Three PointsAn affine transformation is completely determined by specifying \that
does to three points. To illustrate this, find the affine transformétit converts triangl€ with vertices ( - 3, 3),

(0, 3), and (0, 5) into equilateral trianddewith vertices (0, 0), (2, 0), and (\1[5 ), as shown in Figure 5.20.

Ay

(0,9)

(-3.3) 0, 3)

(N3

X
>

c 2,0

Figure 5.20. Converting one triangle into another.

Do this by a sequence of three elementary transformations:
1. TranslateC down by 3 and right by 3 to place verteatc'.

2. Scale irx by 2/3 and iry by\/§ /2 soC matche® in width and height.
3. Shear by 1/:_3 in thex-direction to align the top vertex Gfwith that ofD.

Check that this transformation does in fact transform tria@gheo triangleD. Also find the inverse of this
transformation and show that it converts triariglback into triangleC.

5.2.17. Fixed Points of an Affine TransformationThe pointF is afixed point of the affine transformatiof(p)
= Mpif T(F) =F. That is, ifF satisfiess M =F.

a). Show that when the third columnhfis (0,0,1) - such that there is no translation, the origin isyaladixed
point of T .

b). Show that if is a fixed point ofl then foranyP we haveT(P) = M(P - F)+ F.

¢). Show thaF must always satisfye = d(l - M)'l. Does every affine transformation have a fixed point?
d). What is a fixed point for a rotation about paif?tShow that it satisfies the relationship in part b above.
e). What is the fixed point for a scaling with scale fac&mndS,, about poini/?

f). Consider the “5-th iterate” df() applied taP, given byR = T(T(T(T(T(P))))). (Recall IFS’s described at the
end of Chapter 1). Use the result in b) to show a simple form for deipuerms of fixed poinE of T(): R= (P
-FM +F.

5.2.18. Finding Matrices.Give the explicit form of the 3-by-3 matrix representing eachefdhowing
transformations:

a. Scaling by a factor of 2 in tlxedirection and then rotating about (2, 1).

b. Scaling about (2, 3) and following by translation through (1, 1).

¢. Shearing ix by 30%, scaling by 2 ir, and then rotating about (1, 1) througﬁ.SO
5.2.19. Normalizing a BoxFind the affine transformation that maps the box with corners (0, 0), (®, 5), and
(-2, 4) into the square with corners (0, 0), (1, 0), (1, 1)(@ntl). Sketch the boxes.

Chap 5. Transformations 9/28/99 page 17



5.2.20. Some Transformations Commuteshow that uniform scalingommuteswith rotation, in that the
resulting transformation does not depend on the order in wiecimdividual transformations are applied. Show
that two translations commute, as do two scalings. Show that differemafialjsdoes not commute with rotation.
5.2.21. Reflection plus a rotationShow that a reflection ix followed by a reflection ity is the same as a rotation

by 18.

5.2.22. Two Successive RotationSuppose thd®(q) denotes the transformation that produces a rotation through
angleg. Show that applyin€(q,) followed byR(q,) is equivalent to applying the single rotatiefu, +g,). Thus
successive rotations are additive.

5.2.23. A Succession of Sheafsind the composition of a pure shear alongxiagis followed by a pure shear
along they-axis. Is this still a shear? Sketch by hand an example of whatisappa square centered at the origin
when subjected to a simultaneous shear versus a succession of shearg alemgxties.

5.2.8. Some Useful Properties of Affine Transformations.

We have seen how to represent 2D affine transformations with matioeesy lkompose complex
transformations from a sequence of elementary ones, and the geometric efffetenit D affine
transformations. Before moving on to 3D transformations it iuilsesummarize some general properties of
affine transformations. These properties are easy to establish, angebeoaeference is made of the
dimensionality of the objects being transformed, they apply equallyasw@D affine transformations. The only
fact about 3D transformations we need at this point is that, like their @Recparts, they can be represented in
homogeneous coordinates by a matrix.

1). Affine transformations preserveaffine combinations of points.
We know that an affine combination of two poiRtsandP; is the point

W=a P +a, P, Whereal+a2:1

What happens when we apply an affine transformdi{pio this pointV/? We claimT(W) is thesameaffine
combination of the transformed points, that is:

Claim: T(a, P, +a, P)=a T(P)+a, T(P,), (5.19)
For instanceT(0.7 (2, 9) + 0.3 (1, 6)) = 0.((2, 9)) + 0.3T((1, 6)).

The truth of this is simply a matter of linearity. Using homogeneous cabedirthe point(W) is I\ZVT/ and
we can do the following steps using linearity of matrix multiplication :

MW= M(a P+ aR) = a MP+ g MP

which in ordinary coordinates is juafT(P,) + a,T(P,) as claimed. The property that affine combinations of
points are preserved under affine transformations seemsdkrhentary and abstract, but it turns out to be
pivotal. It is sometimes taken as thefinition of what an affine transformation is.

2). Affine transformations preserve lines and planes.

Affine transformations preserve collinearity and “flatness”, and sarithge of a straight line is another straight
line. To see this, recall that the parametric representatipiof a line throughA andB is itself an affine
combination ofA andB:

L()=(L-) A+tB

This is an affine combination of points, so by the previous result the im&ag® is the same affine combination
of the images of andB:

Q) = (1 -) T(A) +t T(B), (5.20)

Chap 5. Transformations 9/28/99 page 18



This is another straight line passing throdg@h) andT(B). In computer graphics this vastly simplifies drawing
transformed line segments: We need only compute the two transfemdpdintsT(A) andT(B) and then draw a
straight line between them! This saves having to transéachof the points along the line, which is obviously
impossible.

The argument is the same to show that a plane is transformed into anamieerR@call from Equation 4.45 that
the parametric representation for a plane can be written as an affine combinptorntof

P(sst)=sA+tB+(1-s-t)C

When each point is transformed this becomes:

T(P(s, 1)) = ST(A) +t T(B) + (1 -s-t)T(C)

which is clearly also the parametric representation of some plane.

Preservation of collinearity and “flatness” guarantees that polygihtsansform into polygons, and planar
polygons (those whose vertices all lie in a plane) will transform into plangggrd. In particular, triangles will
transform into triangles.

3). Parallelism of lines and planes is preserved.

If two lines or planes are parallel, their images under an affine tramegfon are also parallel. This is easy to
show. We first do it for lines. Take an arbitrary lifae bt having directiorb. It transform~s to the line given in

homogeneous coordinates M( A + bt) = MA +( Mb)t which has direction vectdvb. This new direction
doesnot depend on poinA. Thus two different Iineg 1+ bt andA, + bt that have the same direction will

transform into two lines both having the directidtb, so they are parallel. An important consequence of this
property is thaparallelograms map into other parallelograms

The same argument applies to planes: its direction vectors (see Equd8ptransform into new direction
vectors whose values do not depend on the location of the plane. A consedtiisds that parallelepipegls
map into other parallelepipeds.

Example 5.2.8. How is a grid transformed?

Because affine transformations map parallelograms into glagrhms they are rather limited in how much they
can alter the shape of geometrical objects. To illustrate this apply aaffi@®transformatiof to a unit square
grid, as in Figure 5.21. Because a grid consists of two sets of pared&Tlimaps the square grid to another grid
consisting of two sets of parallel lines. Think of the grid “carrgtang” whatever objects are defined in the
grid, to get an idea of how the objects are warped by the transformatioirs @hithat an affine transformation
can do: warp figures in the same way that one grid is mapped intearntiie new lines can be tilted at any
angle; they can be any (fixed) distance apart; and the two new axes need not becpépetudd of course the
whole grid can be positioned anywhere in the plane.

Figure 5.21. A transformed grid.

5 As we see later, a parallelipiped is the 3D analog of a parallelogram: it has six sides that ocuiofrppeallel faces.

Chap 5. Transformations 9/28/99 page 19



The same result applies in 3D: all a 3D affine transformation césmrdap a cubical grid into a grid of
parallelipipeds.

4). The Columns of the Matrix reveal the Transformed Coordinate Frame.
It is useful to examine the columns of the mallif an affine transformation, for they prescribe how the
coordinate frame is transformed. Suppose the migtiscgiven by

m, m, m,
M=m, m, m,=D,m, mO (5.21)
0 0 1

so its columns are;, m,, andmg. The first two columns are vectors (their third component is 0) and the last
column is a point (its third component is a 1). As always the coordizame fof interest is defined by the origin
J , and the basis vectorgndj, which have representations:

0 1 0
J=0,i= 0,andj= 1
1 0 0

Notice that vector transforms into the vecton; (check this out):
m, = Mi
and similarlyj maps intan, andJ maps into the points. This is illustrated in Figure 5.22a. The coordinate

frame (, j, J ) transforms into the coordinate franme,( m,, ms), and these new objects are precisely the
columns of the matrix.

a). b).

Figure 5.22. The transformation forms a new coordinate frame.

The axes of the new coordinate frame are not necessarily perpendioulast they be unit length. (They are
still perpendicular if the transformation involves only rotatiand uniform scalings.) Any poift=P,i + P,j +
J transforms int®@ = P, m; + Pym, + ms. It is sometimes very revealing to look at the matrix of an affine
transformation in this way.

Example 5.2.9. Rotation about a pointThe transformation explored in Example 5.2.5 is a rotation “chl3@ut
the point (-2, 3). This yielded the matrix:

866 -.5 1232
S5 .866 1402
0 0 1

As shown in Figure 5.22b the coordinate frame therefore maps intowh@pedinate frame with origin at
(1.232, 1.402, 1) and coordinate axes given by the vectors (0.866, 0.5, 0) and (-0.5, O\&&é,tBat these
axes are still perpendicular, since only a rotation is involved.

5). Relative Ratios Are Preserved.

Affine transformations have yet another useful property. ConaigeintP that lies at the fractionof the way
between two given pointg, andB, as shown in Figure 5.23. Apply affine transformafi¢n to A , B, andP. We
claim the transformed point(P), also lies thesamefractiont of the way between the imagg@\) andT(B).
This is not hard to show (see the exercises).

Chap 5. Transformations 9/28/99 page 20



t

T(AN

T(P) T(B)

Figure 5.23. Relative ratios are preserved.

As a special case, midpoints of lines map into midpoints. Thi# peges out a nice geometric result: the
diagonals of any parallelogram bisect each other. (Proof: any pagedlieias an affine-transformed square
(why?), and the diagonals of a square bisect each other, so the diafanadsadlelogram also bisect each
other.) The same applies in 3D space: the diagonals of any paralleleiggadehch other.

Interesting Aside.In addition to preserving lines, parallelism, and relativesatffine transformations also
preserve ellipses and ellipsoids, as we see in Chapter 8!

6). Effect of Transformations on the Areas of Figures.

In CAD applications it is often important to compute the area or volume aibject. For instance, how is the
area of a polygon affected when all of its vertices are subjected to antedfiisformationt is clear
geometrically that neither translations nor rotations lzamyeeffect on the area of a figure, but scalings certainly
do, and shearing might.

The result is simple, and is developed in the exercises: Wh@bttransformation with matrii is applied to
an object, its area is multiplied by thegnitude of the determinaot M:

area after transformation_ detM| (5.22)

areabeforetransformation

In 2D the determinant dfl in Equation 5.6 isn,,m,, - mlzmzr6 Thus for a pure scaling as in Equation 5.10, the
new area i$Sy times the original area, whereas for a shear along one axisitereeis the same as the
original area! Equation 5.21 also confirms that a rotation dateslter the area of a figure, since%(tms +

sin%(q) = 1.

In 3D similar arguments apply, and we can conclude that the volume obbj&f2 is scaled by |d&t| when the
object is transformed by the 3D transformation based on niAtrix

Example 5.2.9: The Area of an EllipseWhat is the area of the ellipse that fits inside a rectangle with ¥idth
and heigh#H? Solution: This ellipse can be formed by scaling the unit cikéle y2 =1 by the scale factof =
WandSy = H, a transformation for which the matfixhas determinanWH. The unit circle is known to have
areap, and so the ellipse has amaH.

7). Every Affine Transformation is Composed of Elementary Operations.
We can construct complex affine transformations by composing a numddenaéntary ones. It is interesting to
turn the question around and ask, what elementary operations “resagiu@h affine transformation?

6 The determinant of the homogeneous coordinate version is the same (why?)

Chap 5. Transformations 9/28/99 page 21



Basically a matrixM may be factored into a product of elementary matrices in various @agsparticular way

of factoring the matri¥Vl associated with a 2D affine transformation, elaborated uponsia Staidy 5.3, yields
the result:

M = (shear)(scaling)(rotation)(translation)

That is, any 3 by 3 matrikz that represents a 2D affine transformation can be written as the prodweetdin§
right to left) a translation matrix, a rotation matrix, a scaling maand a shear matrix. The specific ingredients
of each matrix are given in the Case Study.

In 3D things are somewhat more complicated. The 4 by 4 mistrikat represents a 3D affine transformation
can be written as:

M = (scaling)(rotation)(shear 1)(shear )(translation),

the product of (reading right to left) a translation matrix, a stmedirix, another shear matrix, a rotation matrix,
and a scaling matrix. This result is developed in Case sta@@¢.5.

Practice Exercises.

5.2.294 Generalizing the argumentShow that ifWis an affine combination of tHé pointsPj, i = 1,..N, and

T() is an affine transformation, th&igW) is the same affine combination of tNeointsT(P;j), i = 1,..N.

5.2.25. Show that relative ratios are preservedonsiderP given byA + bt whereb =B - A Find the distances
[P - A andP - B from P to A andB respectively, showing that they lie in the rdtio 1 -t. Is this true it lies
outside of the range 0 to 1? Do the same for the distal(€3s [T(A)| and T(P) - T(B)|.

5.2.26. Effect on AreaShow that a 2D affine transformation causes the area of a figueentalbiplied by the
factor given in Equation 5.27. Hint: View a geometric figure as nugdaf many very small squares, each of
which is mapped into a parallelogram, and then find the are&sqddrallelogram.

5.3. 3D Affine Transformations.
The same ideas apply to 3D affine transformations as apply to iz afinsformations, but of course the
expressions are more complicated, and it is considerably hardsu&tizé the effect of a 3D transformation.

Again we use coordinate frames, and suppose that we have anJoagidthree mutually perpendicular axes in

the directions, j, andk (see Figure 5.8). Poiftin this frame is given bl =J + P,i + P)j + Pk, and so has as
the representation

Supposd() is an affine transformation that transforms pélid pointQ. Then just as in the 2D ca$@ is
represented by a matri which is now 4 by 4:

m, m, m, m,
Gl M M Mo m 523)
m, m, m; m,

0 0 0 1

Chap 5. Transformations 9/28/99 page 22



and we can say that the representation of giistfound by multiplying P by matrikﬁ :

Q P

- P
gy =W 0 (5.24)
1 1

Notice that once again for an affine transformation the final row ahiditeix is a string of zeroes followed a lone
one. (This will cease to be the case when we examine projective mati@esgter 7.)

5.3.1. The Elementary 3D Transformations.
We consider the nature of elementary 3D transformations individuathithen compose them into general 3D
affine transformations.

Translation.
For a pure translation, the matf has the simple form.

100 m,
01 0 m,
00 1 m,
000 1

Check thatQ = MP is simply a shift irQ by the vectom = (mMy4, M4, May).

Scaling.
Scaling in three dimensions is a direct extension of the 2D case, havingeginatr by:
S 0 0 O
0 0O O
S (5.25)
0 0S5 O
0O 0 0 1

where the three constargig, Sy, andS; cause scaling of the corresponding coordinates. Scaling is abouihe or

just as in the 2D case. Figure 5.24 shows the effect of scalingarditextion by 0.5 and in thedirection by a
factor of two.

Chap 5. Transformations 9/28/99 page 23



Figure 5.24. Scaling the basic barn.

Notice that this figure shows various lines before and after beingformed. It capitalizes on the important fact
that straight lines transform to straight lines.

Shearing.

Three-dimensional shears appear in greater variety than do their two-dinacsunterparts. The matrix for the
simplest elementary shear is the identity matrix with one zero term refilasethe value, as in

1 0 0O

f 1.0 O
(5.26)

0 01 O

0 0 0 1

which produce® = (P, f P, + P, P,); that is, P, is offset by some amount proportionaRo and the other
components are unchanged. This causes an effect similar to thathio@Dis Figure 5.15. Goldman
[goldman???] has developed a much more general form for ez, svhich is described in Case Study 5.??7.

Rotations.

Rotations in three dimensions are common in graphics, for we oftdrtavanate an object or a camera in order
to obtain different views. There is a much greater variety ofiootin three than in two dimensions, since we
must specify an axis about which the rotation occurs, rather thamgirgle point. One helpful approach is to
decompose a rotation into a combination of simpler ones.

Elementary rotations about a coordinate axis.

The simplest rotation is a rotation about one of the coordinate\&eesall a rotation about theaxis an %-roll”,

a rotation about thg-axis a ¥-roll”, and one about theaxis a ‘zroll”. We present individually the matrices that
produce arx-roll, ay-roll, and az-roll. In each case the rotation is through an arfglabout the given axis. We
define positive angles using a “looking inward” convention:

Positive values ab cause a counterclockwise (CCW) rotation about an axis as one looks inward from a point on
the positive axis toward the origin.

Chap 5. Transformations 9/28/99 page 24



The three basic positive rotations are illustrated in Figure?s.25.

Figure 5.25. Positive rotations about the three axes.

This formulation is also consistent with our notion of 2D rotationgisitipe rotation in two dimensions is
equivalent to a-roll as we look at they-plane from a point on the positizeaxis.

Notice what happens with this convention for the particular case ofratafion:

* For azroll, thex-axis rotates to thg-axis.
« For anx-roll, they-axis rotates to theaxis.
« For ay-roll, thez-axis rotates to the-axis.

The following three matrices represent transformations that rotate pemighhangleb about a coordinate axis.
We use the suggestive notatigg( ), Ry( ), andRz() to denotex-, y-, andz-rolls, respectively. The parameter is

the angle through which points are rotated, given in radiang; stadds for co4() ands for sin(b).

1. Anx-roll:
1 0 0 O
(b) = O c -s O 7
R(b)= 0 s ¢ O (:27)
00 0 1
2. Ay-roll:
c 0 s O
(b) = 0 100 c 20
R(b)= -s 0 cO (5.28)
0O 0 0 1
3. Azroll:

7In a left-handed system the sense of a rotation throughitvpdswould be CCW lookingutward along the pasive axis from the origin.
This formulation is used by some authors.

Chap 5. Transformations 9/28/99 page 25



R.(b) =

(5.29)

O O nw o
© O o
o O O
O O O

Note that 12 of the terms in each matrix are the zeros and oneddsritiey matrix. They occur in the row and
column that correspond to the axis about which the rotation is being(sgdehe first row and column foxa
roll). They guarantee that the corresponding coordinate gfdim being transformed will not be altered. The
andsterms always appear in a rectangular pattern in the other rows anthsolu

Aside: Why is they-roll different? The sterm appears in the lower row for tkkeandz-rolls, but in the upper
row for they- roll. Is ay-roll inherently different in some way? This question is explored in thecises.

Example 5.3.1. Rotating the barnFigure 5.26 shows a “barn” in its original orientation (part a),adtet
a -70°x-roll (part b), a 30%-roll (part c), and a -902-roll (part d).

a). the barn b). -70 x-roll

c). 30 y-roll d). -90 z-roll

Figure 5.26. Rotating the basic barn.

Example 5.3.2 Rotate the poin® = (3, 1, 4) through 30° about tlyeaxis. Solution: Using Equation 9.9.10 with
c=.866 and = .5,P is transformed into

c 0 s 03 4.6
01001 1

Q% s 0 co0 4 1964
0 0011 1

As expected, thg-coordinate of the point is not altered.

Chap 5. Transformations 9/28/99 page 26



Practice Exercises.

5.3.1. Visualizing the 90° RotationsDraw a right-handed 3D system and convince yourself that a 90brotati
(CCW looking toward the origin) about each axis rotates the otlesriato one another, as specified in the
preceding list. What is the effect of rotating a point onxthgis about the-axis?

5.3.2. Rotating the Basic BarnSketch the basic barn after each vertex has experienceckaclibRepeat for

y- andz-rolls.

5.3.3. Do a RotationFind the imag®) of the pointP = (1, 2, -1) after a 45j-roll. SketchP andQ in a 3D
coordinate system and show that your result is reasonable.

5.3.4. Testing 90° Rotations of the Axe3his exercise provides a useful trick for remembering the form of the
rotation matrices. Apply each of the three rotation matrices to éalch standard unit position vectorsj, and

k, using a 90° rotation. In each case discuss the effect of the tran#fororathe unit vector.

5.3.5. Is a y-roll indeed different? The minus sign in Equation 5.28 seems to be in the wrong place: on the
lower srather than the upper one. Here you show that Equations 5.27-29aedonsistent. It's just a matter
of how things are ordered. Think of the three axgsandz as occurring cyclicallyx ->y ->z->x->y ..., etc.

If we are discussing a rotation about some “current” axjg/{, or z-) then we can identify the “previous” axis
and the “next” axis. For instancexifis the current axis, then the previous one end the next ig-. Show that
with this naming all three types of rotations use the same equaigps:P, . Q .=CP. .- S Pprev, andQyrey

=sP_.*C Pprev Write these equations out for each of the three possible “current” axes.

5.3.2. Composing 3D Affine Transformations.

Not surprisingly, 3D affine transformations can be composed, and tiieiseanother 3D affine transformation.
The thinking is exactly parallel to that which led to Equation 5.1ér2D case. The matrix that represents the
overall transformation is the product of the individual matrMesndM, that perform the two transformations,
with M, premultiplyingM;:

M= M, M,. (5.30)

Any number of affine transformations can be composed in this way, andearaiggix results that represents
the overall transformation.

Figure 5.27 shows an example, where a barn is first transformed asied/s, then that transformed barn is
again transformed using,. The result is the same as the barn transformed onceMgihg

Figure 5.27. Composing 3D affine transformations. (file: fig5.27.bmp)

5.3.3. Combining Rotations.
Results! Why, man, | have gotten a lot of results.

Chap 5. Transformations 9/28/99 page 27



I know several thousand things that won’t work.
Thomas A. Edison

One of the most important distinctions between 2D and 3D tranafans is the manner in which rotations
combine. In 2D two rotations, s&(b,) andR(b,), combine to produc(b;+b,), and the order in which they are
combined makes no difference. In 3D the situation is much more aatgalj because rotations can be about
different axes. The order in which two rotations about diffeaget are performetbesmatter: 3D rotation
matrices daot commute. We explore some properties of 3D rotations here, investiddtargnt ways that a
rotation can be represented, and see how to create rotations that tdongaier

It's very common to build a rotation in 3D by composing three elemerttations: arx-roll followed by ay-
roll, and then a-roll. Using the notation of Equations 5.27-29 for each individugltiee overall rotation is
given by

M= R (bR, (b,)R(b,) (5.31)

In this context the anglés, b,, andb; are often calledEuler® angles One form ofEuler’'s Theorem asserts
thatany 3D rotation can be obtained by three rolls aboukthg, andz-axes, so any rotation can be written as
in Equation 5.32 for the appropriate choice of Euler angles. ks that it takes three values to completely
specify a rotation.

Example 5.3.3What is the matrix associated witharoll of 45° followed by ay-roll of 3¢° followed by az-
roll of 60° ? Direct multiplication of the three component matrices (in the proper “reversey yields:
5 -86 0 086 0 .5 .01 O 0 0 433 - .436 789 O
866 .5 o0 o0 1 0 00 .707 -.707 O _ .75 .66 -.047 O
0 0 10 -5 0 .866 00 .707 .707 O -5 .12 .612 O
0 0 01 0 O O 10 O 0 1 0 0 0 1

Some people use a different ordering of “rolls” to create a complipati@iion. For instance, they might express a
rotation asR/(bl)Rz(bz) R (b;): first ay-roll then az-roll then anx-roll. Because rotations in 3D do not

commute this requires the use of different Euler anfgles,, andbs to create the same rotation as in Equation
5.32. There are 12 possible orderings of the three individug) asltl each uses different valuestgrb,, andbs.

Rotations About an Arbitrary Axis.

When using Euler angles we perform a sequenge @f, andzrolls, that is, rotations about a coordinate axis.
But it can be much easier to work with rotations if we have a way to rotate abaxisdahat points in an
arbitrary direction. Visualize the earth, or a toy top, spinning aboltiea #ixis. In fact, Euler’s theorem states
that every rotation can be represented as one of this type:

Euler's Theorem: Any rotation (or sequence of rotations) about a point is equivalent to a sotgteon about
some axis through that poitt.

What is the matrix for such a rotation, and can we work with it conveniently?

Figure 5.28 shows an axis represented by vegtand an arbitrary poirR that is to be rotated through angle
aboutu to produce poin@.

8 | eonhard Euler, 1707-1783, a Swiss mathematician of extraordinility @ho made important contributions to all branches of
mathematics.

9 This is sometimes stated: Given two rectangular coordinate systems with the samendrigibitrary directions of axes, one can always
specify a line through the origin such that one coordinate system goes into the other by a rotatihisdineu [gellert7$

Chap 5. Transformations 9/28/99 page 28



Figure 5.28. Rotation about an axis through the origin.

Becausai can have any direction, it would seem at first glance to be veryutliffccfind a single matrix that
represents such a rotation. But in fact it can be found in two raffexedi ways, a classic way and a
constructive way.

1). The classic way.Decompose the required rotation into a sequence of known steps:
1. Perform two rotations so thabecomes aligned with tteaxis.

2. Do azroll through angleb.

3. Undo the two alignment rotations to restore its original direction.

This is reminiscent of rotating about a point in two dimensions: Tstestiep prepares the situation for a simpler
known operation; the simple operation is done; and finally the jatma step is undone. The result (discussed
in the exercises) is that the transformation requires the multiplicdtfore anatrices:

Ru(b) =Rgz( -q) Ry( -f) Rz(b) Ry(f) Rz(q) (5.32)

each being a rotation about one of the coordinate axes. This isstédlido by hand but is straightforward to
carry out in a program. However, expanding out the product gttlesrisight into how the ingredients go
together.

2). The constructive way.Using some vector tools we can obtain a more revealing expression ffoattie
Ru(b). This approach has become popular recently, and versiorarefdescribed by several authors in GEMS |
[glass90]. We adapt the derivation of Maillot [mail90].

Figure 5.29 shows the axis of rotatimnand we wish to express the operation of rotating othtough angléd
into pointQ. The method, spelled out in Case Study 5.5, effectively estabtistid€oordinate system in the
plane of rotation as shown. This defines two orthogonal veatanslb lying in the plane, and as shown in
Figure 5.29b poin@ is expressed as a linear combination of them. The expressiQrirfeolves dot products
and cross products of various ingredients in the problem. But because dseteafis is linear in the
coordinates oP, it can be rewritten a3 times a matrix.

Chap 5. Transformations 9/28/99 page 29



a). z

X/ /) P

Figure 5.29P rotates tdQ in the plane of rotation.

The final result is the matrix:

c+(@-ou’ (X guur su, @ cquu su, O

_ @-ouut sy  e(l- ¥ (- Fuy suoO
L-ouu- sy (X ¢yy sy +c(l- b O
0 0 0 1

(5.33)

R.(b)

wherec= cogb), ands = sin(b), and (@, u,, u,) are the components of the unit veatoiThis looks more
complicated than it is. In fact, as we see later, there is so much strinctine terms that, given an arbitrary
rotation matrix, we can find the specific axis and angle that producedatiendqwhich proves Euler’s
theorem).

As we see later, OpenGL provides a function to create a rotation abantiteary axis:
glRotated(angle, ux, uy, uz);

Example 5.3.4. Rotating about an axisFind the matrix that produces a rotation throughad®ut the
axisu = (11,0 /+/3=(0577 0577 0 57%7Solution: For a 48 rotation,c =s = 0.707, and filling in the
terms in Equation 5.33 we obtain:
8047 -.31 .5058 O
5058 .8047 -.31 O
-31 .5058 .8047 O

0 0 0 1

R,(45") =

This has a determinant of 1 as expected. Figure 5.30 shows the lbasghbited away from the origin, before it
is rotated (dark), after a rotation through 2ZrGedium), and after a rotation of°4ffight).

Chap 5. Transformations 9/28/99 page 30



Figure 5.30. The basic barn rotated about axis

Finding the Axis and Angle of Rotation.

Euler's theorem guarantees that any rotation is equivalent tateonoabout some axis. It is useful, when
presented with some rotation matrix, to determine the specific akiaragte. That is, given valuas for the
matrix:

m, m, m; O
0

R(by= M M2 M
my; m, m, O

0 0 0 1

extract the anglé and the unit vectan.

This is surprisingly easy to do by examining Equation 5.33[watt92} irite that the trace Bf(b), that is the
sum of the three diagonal elements36 + (1- C)(UX2 + US + uzz) =1+2cos(). So we can solve for

cogb) directly:
cos(b) = 3 (m, +m,, +m,, - 1).

Take the arc cosine of this value to obtajrand use it to fing = sin(b) as well. Now see that pairs of elements
of the matrix combine to reveal the individual components of

— My, - Mg
* 2sin(b)
_ M- My
=_13 31 5.34
Y 2sin(b) 5349
— My - My
* 2sin(b)

Chap 5. Transformations 9/28/99 page 31



Example 5.3.5. Find the axis and anglé2retend you don’t know the underlying axis and angle for théawota
matrix in Example 5.3.3, and solve for it. The trace is 2.414, sb)cos].707 b must be 44 and sinp) =

0.707. Now calculate each of the terms in Equation 5.35: they llthie value 0.577, sa = (1, 1, 1)/f3,
just as we expected.

Practice Exercises.

5.3.6. Which ones commute€onsider two affine transformatiois andT,. IsT, T, the same a§,T; when:

a). They are both pure translations? b). They are both scalings? c)ré& heytashears?

d). One is a rotation and one a translation? €). One is a rotation anch@oaling?

f). One is a scaling and one is a shear?

5.3.7. Special cases of rotation about a general axisltualways helps to see that a complicated result collapses
to a familiar one in special cases. Check that this happens in Ego@#owheru is itself

a). thex-axis,i; b). they-axis,j; c). thez-axis,k.

5.3.8. Classic Approach to Rotation about an Axiddere we suggest how to find the rotations that cauee
become aligned with theaxis. (See Appendix 2 for a review of spherical coordinates.) Sufiposkrection of

u is given by the spherical coordinate andlesdq as indicated in Figure 5.27. Alignwith thez-axis by az-

roll through ¢: this swingsu into thexzplane to form the new axig, (sketch this). Use Equation 5.29 to obtain
Rz(-q). Second, g-roll through # completes the alignment process. Withligned along the-axis, do the

desiredz-roll through angld, using Equation 5.29. Finally, the alignment rotations must be undoestooe
the axis to its original direction. Use the inverse matricétoef ) andRz( -q), which areRy(f) andRz( ),
respectively. First undo theroll and then the-roll. Finally, multiply these five elementary rotations to obtain
Equation 5.34. Work out the details, and apply them to find the niatitirat performs a rotation through angle
35° about the axis situatedget30° andf = 45°. Show that the final result is:

877 -.366 .281 O

445 842 - 306 O
-124 .396 .910 O

0 0 0 1

5.3.9. Orthogonal Matrices A matrix isorthogonal if its columns are mutually orthogonal unit-length vectors.
Show that each of the three rotation matrices given in Equations $igb&hogonal. What is the determinant
of an orthogonal matrix? An orthogonal matrix has a splendid gyos inverse is identical to its transpose
(also see Appendix 2). Show why the orthogonality of the columns guar#mtedsnd the inverse of each of
the three rotation matrices above, and show that the inversetatian is simply a rotation in the opposite
direction.

5.3.10. The Matrix Is Orthogonal. Show that the complicated rotation matrix in Equation 5.34 is aotiedg
5.3.11. Structure of a rotation matrix. Show that for a 3x3 rotatiod the three rows are pair-wise orthogonal,
and the third is the cross product of first two.

5.3.12. What if the axis of rotation does not pass through the originthe axis does not pass through the
origin but instead is given dy+ ut for some poing then we must first translate to the origin througrapply
the appropriate rotation, and then translate back thr8uDerive the overall matrix that results.

M =

5.3.4. Summary of Properties of 3D Affine Transformations.
The properties noted for affine transformations in Sectio a@ply, of course, to 3D affine transformations.
Stated in terms of any 3D affine transformalfigr) having matrix\, they are:

Affine transformations preserveaffine combinations of points If a + b = 1 thenaP + bQis a meaningful
3D point, andl(aP + bQ) =aT(P) + bT(Q).

Affine transformations preserve lines and planesStraightness is preserved: The imag@e of a lineL in
3D space is another straight line; the imaf#) of a plané/V in 3D space is another plane.

Parallelism of lines and planes is preservedf W andZ are parallel lines (or planes), thgfw) andT(2)
are also parallel.

Chap 5. Transformations 9/28/99 page 32



The Columns of the Matrix reveal the Transformed Coordinate Framelf the columns oM are the
vectorsmgy, m,, msz, and the poinin, the transformation maps the frameg (k, J ) to the framerf;, m,,
ma, My).

Relative Ratios Are Preserved.If P is fractionf of the way from poinf to pointB, thenT(P) is also
fractionf of the way from poinT(A) to T(B).

Effect of Transformations on the Areas of Figures.If 3D objectD has volumeé/, then its imagd(D) has
volume fletM |V, where detM]| is the absolute value of the determinartiof

Every Affine Transformation is Composed of Elementary OperationsA 3D affine transformation may
be decomposed into a composition of elementary transformations. This danebl several ways.

5.4. Changing Coordinate Systems.
There’s another way to think about affine transformationmadny respect it is a more natural approach when
modeling a scene. Instead of viewing an affine transformatipnoalsicing a different point in a fixed coordinate
system, you think of it as producing a new coordinate system in whielpresent points.

Aside: a word on notation: To make things fit better on the printed page, we shall sometimes us#dtien

P

X

(Px, Py, 1)" in place of F’y . (Also see Appendix 2.) The supersciipdenotes th&ranspose so we are
1

simply writing the column vector as a transposed row vector.

Suppose we have a 2D coordinate frame #1 as shown in Figure 5.31,igiithVoand axes andj. Further
suppose we have an affine transformali@h represented by matrM. SoT(.) transforms coordinate frame #1
into coordinate frame #2, with new origiHi = T(J), and new axes = T(i) andj’ = T(j).

Figure 5.31. Transforming a coordinate frame.

Now letP be a point with representation, ¢, 1)" in the new system #2. What are the valuesaridb in its
representationa( b, 1) in the original system #1? The answer: just multiphd( 1)" by M:

a c
b=Md (5.35)
1 1

Summarizing: Suppose coordinate system #2 is formed from coordistgmgyl by the affine transformation
M. Further suppose that poidt= (Py, Py, P,,1) are the coordinates of a poihexpressed in system #2. Then the
coordinates oP expressed in system #1 ane.

This may seem obvious to some readers, but in case it doesniyaideris developed in the exercises. This
result also holds for 3D systems, of course, and we use isasx¢gnwhen calculating how 3D points are
transformed as they are passed down the graphics pipeline.

Example 5.4.1. Rotating a coordinate systenConsider again the transformation of Example 5.2.5 that rotates
points through 30about the point (-2, 3). (See Figure 5.22.) This transformatios thaporigind and axes

andj into the system #2 as shown in that figure. Now consider theP@iith coordinatesR,, P,, 1)" in thenew
coordinate system. What are the coordinates of this point expresheaiiginal system #1? The answer is
simply MP. For instance, (1, 2, 1)n the new system lies Bt(1, 2, 1§ = (1.098, 3.634, T)in the original

system. (Sketch this in the figure.) Notice that the point (-2,"3tH8 center of rotation of the transformation, is

Chap 5. Transformations 9/28/99 page 33



afixed pointof the transformatiorvi(2, 3, 1J = (2, 3, 1J. Thus if we takd® = (-2, 3, 1J in the new system, it
maps to (-2, 3, T)in the original system (check this visually).

Successive Changes in a Coordinate frame.

Now consider forming a transformation by making two successive ekaighe coordinate system. What is the
overall effect? As suggested in Figure 5.32, system #1 is convertedeim gi&ty transformatiom(.), and
system #2 is then transformed to system #3 by transfornB{ignNote that system #3 is transfornrethtive

to #2.

AY

system #3

™~ system #2

system #1

\ ko

Figure 5.32. Transforming a coordinate system twice.

Again the question is: if poirR has representatioe, f,1)" with respect to system #3, what are its coordinates (
b,1)" with respect to the original system #1?

To answer this just work backwards and collect the effects of each transforrmaterms of system #2 the
pointP has coordinates,(d,1)" = M,(e, f,1)". And in terms of system #1 the poiot§,1)" has coordinatesy
b,1)" =M, (¢, d,1)". Putting these together:

a C e
b=Md =MM, f (5.36)
1 1 1

The essential point is that when determining the desired coordinabe)( from (g, f,1)" we first applyM, and
thenM,, just theoppositeorder as when applying transformations to points.

We summarize this fact for the case of three successive transform@tiengsult generalizes immediately to
any number of transformations.

Transforming points. To apply a sequence of transformatidn@, T,(), Ts() (in that order) to a poirR, form the
matrix:

M=M," M,” M,
ThenP is transformed tMP. To compose each successive transformatioryou mustpremultiply by M;.

Transforming the coordinate systemTo apply a sequence of transformatidng, T,(), Ts() (in that order) to
the coordinate system, form the matrix:

M=M," M, M,

Chap 5. Transformations 9/28/99 page 34



Then a poinP expressed in the transformed system has coordiltRes the original system. To compose
each additional transformatidf; you mustpostmultiplyby M;.

How OpenGL operates.

We shall see in the next section that OpenGL provides tools for succesgipbling transformations in order to
build up an overall “current transformation”. In fact OpenGL is orgahibppostmultiplyeach new
transformation matrix to combine it with the current transformatltus it will often seem more natural to the
modeler to think in terms of successively transforming the caatelsystem involved, as the order in which
these transformations is carried out isgshmeas the order in which OpenGL computes them.

Practice Exercises.

5.4.1. How transforming a coordinate system relates to transformina point.

We wish to show the result in Equation 5.35. To do this, show each ofltvérig steps.

a). Show why the poirf with representatiorc(d, 1)" used in system #2 lieseit +dj’ +J".

b). We want to find where this point lies in system #1. Show that the re@tsertin system #1) of is M(1, O,
0)', that ofj” is M(0, 1, 0f, and that of]’ is M(0, 0, 1).

c). Show that therefore the representation of the pdirtdj’ +J’ is cM(1, 0, 0 +dM(0, 1, 0J+ M(O, 0, 1J.
d). Show that this is the sameMg, 0, 0f+ M(0, d, 0)" + M(0, 0, 1) and that this M(c, d, 1)", as claimed.
5.4.2. Using elementary exampleg&igure 5.33 shows the effect of four elementary transformations of a
coordinate system. In each case the original system withxaedy is transformed into the new system with
axesx andy'.

a).translate(m, n ) b).rotate(a)
y y
(e)f)
/71\\
n s : \ X
A/E >
L . ' X
m > X
d).scale(1,-1)
Ay
/f
-f - - _T(el f)
|
22 — "%
3
T T X X A%

Figure 5.33. Elementary changes between coordinate systems.

a). Part a) shows the effect of a translation througm), Show that pointg, f) in the new system lies a € m,

f + n) in the original system.

b). Part b) shows the effect of a rotation about the origin thréudggrees. Show that the poig;f) in the new
system lies at gcoqa) - f sin(a), e sin(a) + f coqa)), wherea=p A/ 180 radians.

¢). Part c) shows the effect of a scaling of the axes by (3, 2). To makguteedearer the new and old axes are
shown slightly displaced. Show that a pomtf] in the new system lies atg3) in the original system.

d). part d) shows a special case of scaling, a reflection abaxsattie. Show that the poing,(f) lies in the

original system ate{ ).

5.5. Using Affine Transformations in a Program.

Chap 5. Transformations 9/28/99 page 35



We want to see how to apply the theory of affine transformations in eapndg carry out scaling, rotating, and
translating of graphical objects. We also investigate how it is done when3Dgs used. We look at 2D
examples first as they are easier to visualize, then move on to 3D examples.

To set the stage, suppose you have a rohtise () that draws the house #1 in Figure 5.34. But you wish to
draw the version #2 shown that has been rotated throu@jan@8@hen translated through (32, 25). This is a
frequently encountered situation: an object is defined at a conveide and position, but we want to draw it
(perhaps many times) at different sizes, orientations, and Iosatio

a).

Ay

23 l \
#1 @

&,

32

Figure 5.34. Drawing a rotated and translated house.

As we discussed in Chapterlyuse() would draw the various polylines of the figure. If it were writie
“raw” OpenGL it might consist of a large number of chunks like:

glBegin(GL_LINES);
glVertex2d(V[0].x, V[O].y);
glVertex2d(V[1].x, V[1].y);
glVertex2d(V[2].x, V[2].y);
.... Il the remaining points
glEnd();

based on some arr&y] of points. Or if we use the Canvas class developed in Chapter 3 there wauld b
number of calls tanoveTo() andlineTo()  asin (using the global canvas objegs ):

cvs.moveTo(V[0]);

cvs.lineTo(V[1]);

cvs.lineTo(V[2]);

... Il the remaining points

In either case we would set up a world window and a viewport with ldedt

cvs.setWindow(...);
cvs.setViewport(...);

and we would be assured that all vertex positiiils are “quietly” converted from world coordinates to screen
window coordinates by the underlying window to viewport transformation.

But how do we arrange matters so that house #2 is drawn instead? Thenesisl way and the easy way.
The hard way.
With this approach we construct the matrix for the desired transformatioi, aagt build a routine, say

transform2D() , that transforms one point into another, such that:

Q = transform2D(M, P);

Chap 5. Transformations 9/28/99 page 36



The routine produceé = |\7IF~’ To apply the transformation to each padffif in house () we must adjust the
source code above as in

cvs.moveTo(transform2D(M, V[0])); // move to the transformed point
cvs.lineTo(transform2D(M, V[1]));
cvs.lineTo(transform2D(M, V[2]));

so that th@ransformedpoints are sent imoveTo() andlineTo (). This is workable if the source code for
house () is at hand. But it is cumbersome at best, antipossibleat all if the source code ftwouse () is not
available. It also requires tools to create the maiix the first place.

The easy way.

We cause the desired transformation to be applied automatically to eteoh Yest as we know the window to
viewport mapping is “quietly” applied to each vertex as pamafeTo() andlineTo (), we can have an
additional transformation be quietly applied as well. It is often calleduirent transformation, CT. We
enhancenoveTo() andlineTo () in the Canvas class so that they first quietly apply this transfamratthe
argument vertex, and then apply the window to viewport mapping p{etjps performed at the world window
boundary as well.)

Figure 5.35 provides a slight elaboration of the graphics pipeline welirted in Figure 5.7. When

glVertex2d() s called with argumeny, the vertexV is first transformed by th€T to form pointQ. Q is then
passed through the window to viewport mapping to form ®intthe screen window. (As we see later, clipping
is also performed, “inside” this last mapping process.)

Figure 5.35. The current transformation is applied to vertices.

How do we extendnoveTo() andlineTo () so they quietly carry out this additional mapping? (i.e. how do we
rewrite these functions in the Canvas class?) If you are not using OpenGlugbwrite code that actually
performs the transformation; this is described in Case Study 5.1 Hrgausing OpenGL it is done
automatically! OpenGL maintains a so-calteddelview matrix, and every vertex that is passed down the
graphics pipeline is multiplied by it. We need only set up the modelvievixt@aembody the desired
transformation.

OpenGL works entirely in 3D, so its modelview matrix produces 3Btoamations. Here we work with the
modelview matrix in a restricted way to perform 2D transformationsr khageise its full power. Figure 5.36
shows how we restrict the 3D transformations to carry out thieedeZD transformations. The main idea is that
2D drawing is done in they-plane: thez-coordinate is understood to be zero. Therefore when we transform 2D
points we set the part of the underlying 3D transformation thattsffieez-coordinate so that it has no effect at
all. For example, rotating about the origin in 2D is equivalenttaiing about the-axis in 3D, as shown in the
figure. Further, although a scaling in 3D takes three scale faB&y, andSzto scale in the, y, andz

dimensions, respectively, we set the scale fdégror 1.

Chap 5. Transformations 9/28/99 page 37



Figure 5.36. 2D drawing takes place in dyelane.

The principal routines for altering the modelview matrixgiRotated ()10, glScaled (), and

glTranslated (). These don't set th€T directly; instead eaghostmultiplieghe CT (the modelview matrix)

by a particular matrix, sayl, and puts the result back into &. That is, each of these routines creates a matrix
M as required for the new transformation, and performs:

CT=CT*M (5.37)

The order is important. As we saw earlier, applyiig*@®/ to a point is equivalent to first performing the
transformation embodied M, followed by performing the transformation dictated by the previoug\&QT.
Or if we are thinking in terms of transforming the coordinate Bysieis equivalent to performing one
additional transformation to the existing current coordinatersyste

OpenGL routines for applying transformations in the 2D case are:

glScaled(sx, sy, 1.0); PostmultiplyCT by a matrix that performs a scaling $%in x and
by syiny; Put the result back iIBT. No scaling irzis done.

glTranslated(dx, dy, 0); PostmultiplyCT by a matrix that performs a translationdin x
and bydyiny; Put the result back iBT. No translation irzis done.

glRotated(angle, 0, 0, 1); PostmultiplyCT by a matrix that performs a rotation throwgigle
degrees about theaxis (indicated by (0, 0, 2. Put the result back i@T.

Since these routines only compose a transformation witB Theve need some way to get started: to initialize
the CT to the identity transformation. OpenGL providgisoadldentity (). And because these functions can
be set to work on any of the matrices that OpenGL supports, we must @fenGL which matrix we are
altering. This is accomplished usigbiMatrixMode (GL_MODELVIEW)

Figure 5.37 shows suitable definitions of four new methods df#mvasclass that manage t&d and allow us
to build up arbitrarily complex 2D transformations. Their pleasimgpbctity is possible because OpenGL is
doing the hard work.

//<<<<<<<<<LLLL L NItCT >>>>>>55>>55>>>>>
void Canvas:: initCT(void)
{
gIMatrixMode(GL_MODELVIEW);
glLoadldentity(); /I set CT to the identity matrix

}

fl<<<<ggggggg<< scale2D >>>>>>>5>5>5>5>5>5>5555>5>>>
void Canvas:: scale2D(double sx, double sy)

{
gIMatrixMode(GL_MODELVIEW);

glScaled(sx, sy, 1.0); // set CT to CT * (2D scaling)

}

Jl<<<<<<ggg<<<<<< translate2D >>>>>>>>>>>>>>>>>
void Canvas:: translate2D(double dx, double dy)

{

10 The suffix ‘d’ indicates that its arguments daubles . There is also the versighiRotatef () that takedloat arguments.
11 Here, as always, positive anglesguce CCW rotations.

Chap 5. Transformations 9/28/99 page 38




gIMatrixMode(GL_MODELVIEW);
glTranslated(dx, dy, 1.0); // set CT to CT * (2D translation)
}

/l<<<<<<<<ggg<< rotate2D >>>>5>5>5555>>5>>>>>>
void Canvas:: rotate2D(double angle)
{
glMatrixMode(GL_MODELVIEW);
glRotated(angle, 0.0, 0.0, 1.0); // set CT to CT * (2D rotation)
}

Figure 5.37. Routines to manage @iEfor 2D transformations.

We are now in a position to use 2D transformations. Returning to drawisigrvé2 of the house in Figure 5.34,
we next show the code that first rotates the house througlan8ahen translates it through (32, 25). Notice that,
to get the ordering straight, it calls the operations in opposite tordee way they are appliefitst the

translation operation, antdenthe rotation operation.

cvs.setWindow(...);

cvs.setViewport(..); // set the window to viewport mapping
cvs.initCT(); /I get started with the identity transformation
house(); /I draw the untransformed house first
cvs.translate2D(32, 25); // CT now includes translation
cvs.rotate2D(-30.0);  // CT now includes translation and rotation
house(); /I draw the transformed house

Notice that we can scale, rotate, and position the house in any manner s& e@mabnever need to “go inside”
the routinehouse () or alter it. (In particular, the source codetiouse () need not be available.)

Some people find it more natural to think in terms of transforming thelioade system. As shown in Figure
5.38 they would think of first translating the coordinate systenwugh (32, 25) to form system #2, and then
rotatingthat system through -3@o obtain coordinate system #3. Because OpenGL applies transforsrintihe
order that coordinate systems are altered, the code for doing it thfgstaallscvs.translate2D(32,

25) and then callsvs.rotate2D(-30.0) . This is, of coursddenticalto the code obtained doing it the
other way, but it has been arrived at through a different thinkinggsoc

Figure 5.38. The same transformation viewed as a sequence of at®gyjistem changes.

We give some further examples to show how easily¥this manipulated to produce various effects.

Example 5.5.1. Capitalizing on rotational symmetry.

‘ Figure 5.39a shows a star made of stripes that seem to interlbcengitanother. This is easy to draw using
rotate2D (). Suppose that routirstarMotif() draws a part of the star, the polygon shown in Figure 5.39b.
(Determining the positions of this polygon’s vertices is challengind,is addressed in Case Study 5.2.) To
draw the whole star we just draw the motif five times, each time roténignotif through an additional 72°:

Chap 5. Transformations 9/28/99 page 39




Figure 5.39. Using successive rotations of the coordinate system.

for(int count = 0; count < 5; count++)

{

starMotif();

cvs.rotate2D(72.0); // concatenate another rotation
}

Visualize what is happening during each of these steps.

Example 5.5.2. Drawing snowflakes.

The beauty of a snowflake arises in good measure from its high degreenoésy. A snowflake has six
identical spokes oriented B@part, and each spoke is symmetrical about its own axis. It is easy to produce a
complex snowflake by designing one half of a spoke, and drawing in&2.tFigure 5.40a shows a snowflake,
based on the motif shown in Figure 5.40b. The motif is a polyline treriaees around above the positive

axis. (To avoid any overlap with other parts of the snowflake, the peligikept below the 8dine shown in the
figure.) Suppose the routitilekeMotif() draws this polyline.

a). b).

300 line

Figure 5.40. Designing a Snowflake.

Each spoke of the snowflake is a combination of the motif and a reflemtgidrn A reflection about theaxis

is achieved by the use sfale2D(1,-1)(why?) , S0 the motif plus its reflection can be drawn using
flakeMotif(); [/l draw the top half
cvs.scale2D(1.0,-1.0); /I flip it vertically
flakeMotif(); /I draw the bottom half
cvs.scale2D(1.0,-1.0); /I restore the original axis

To draw the entire snowflake just do this six times, with an interventagon of 66:

void drawFlake()

{

for(int count = 0; count < 6; count++) // draw a snowflake
flakeMotif();

cvs.scale2D(1.0,-1.0);
flakeMotif();

Chap 5. Transformations 9/28/99 page 40



cvs.scale2D(1.0,-1.0);
cvs.rotate2D(60.0); /I concatenate a 60 degree rotation

}

Example 5.5.3. A Flurry of Snowflakes.
A flurry of snowflakes like that shown in Figure 5.41 can be drawdrbwing the flake repeatedly at random
positions, as in:

Figure 5.41. A flurry of snowflakes.
while('bored)

cvs.initCT();
cvs.translate2D( random amount, random amoint
drawFlake();

}

Notice that theCT has to be initialized each time, to prevent the translations from accumulating.

Example 5.5.4. Making patterns from a motif.

Figure 5.42 shows two configurations of the dinosaur motif. The dirasagidistributed around a circle in both
versions, but in one case each dinosaur is rotated so that its feebyaimt the origin, and in the other all the
dinosaurs are upright. In both cases a combination of rotatiortsagusthtions is used to create the pattern. It is
interesting to see how the ordering of the operations affects the picture.

Chap 5. Transformations 9/28/99 page 41



Figure 5.42. Two patterns based on a motif. a). each motif is rotatedtepdma all motifs are upright.

Suppose thadrawDino () draws an upright dinosaur centered at the origin. In part &ptirdinate system for
each motif is first rotated about the origin through a suitable anglg¢hean this coordinate system is translated
along itsy-axis byH units as shown in the following code. Note that@ids reinitialized each time through the
loop so that the transformations don’t accumulate. (Think throwgtrahsformations you would use if instead
you took the point of view of transforming points of the motif.)

const int numMotifs = 12;
for(inti = 0; i < numMotifs; i++)

{
cvs.initCT(); // init CT at each iteration
cvs.rotate2D(i * 360 / numMotifs); // rotate
cvs.translate2D(0.0, H); // shift along y-axis
drawDino();

}

An easy way to keep the motifs upright as in part b) is to “pre-faatd motif before translating it. If a
particular motif is to appear finally at 12 is first rotated (while still at the origin) through -£2then
translated up b units, and then rotated through 12@/hat ajustments to the preceding codléachieve this?

5.5.1. Saving the CT for later use.

A program can involve rather lengthy sequences of catts&te2D (), scale2D (), andtranslate2D ().
These functions make “additional” or “relative” changes tadfigbut sometimes we may need to “back up” to
some priorCT in order to follow a different path of transformations for the nexaines of a picture. In order to
“remember” the desire@T we make a copy of it and store it in a convenient location. Then &t @tant we

can restore this matrix as td, effectively returning to the transformation that was in effect at that point. We
may even want to keep a collection of “pri@T's, and return to selected ones at key moments.

To do this you can work with stack of transformations as suggested by Figure 5.43. The top matrix on the
stack is the actu&T, and operations likeotate2D () compose their transformation with it in the manner
described earlier. To save tt@g for later use a copy of it is made and “pushed” onto the stackaismgine
pushCT (). This makes the top two items on the stack identical. The top itemogabe altered further with
additional calls tscale2D () and the like. To return to the previdd3 the top item is simply “popped” off the
stack usingpopCT(), and discarded. This way we can return to the most r€detihe next most rece@T, and
so forth, in a last-in, first-out order.

Chap 5. Transformations 9/28/99 page 42



a). before b). aftpushCT () c). afterotate2D () d). aftepopCT()

Figure 5.43. Manipulating a stack GT's.

The implementation gfushCT() andpopCT() is simple when OpenGL is being used, since OpenGL has
routinesglPushMatrix () andglPopMatrix () to manage several different stacks of matrices. Figure 5.44
shows the required functions. Note that each of them must ir@@enGL which matrix stack is being affected.

void Canvas:: pushCT(void)
{
gIMatrixMode(GL_MODELVIEW);
glPushMatrix(); I/l push a copy of the top matrix
}
void Canvas:: popCT(void)
{
gIMatrixMode(GL_MODELVIEW);
glPopMatrix(); I/ pop the top matrix from the stack
}

Figure 5.44. Routines to save and restore CT’s.

Example 5.5.5: Tilings made easy.

Many beautiful designs callgtdings appear on walls, pottery, and fabric. They are based on the repdt#ion o
basic motif both horizontally and vertically. Consider tilthg window with some motif, as suggested in Figure
5.45. The motif is drawn centered in its own coordinate systeshaen in part a) using some routine
drawMotif (). Copies of the motif are drawnunits apart in the x-direction, aftlunits apart in thg-

direction, as shown in part b).

a). the motif b). the tiling

Figure 5.45. A tiling based on a motif.

Figure 5.46 shows how easily the coordinate system can be maadbinla double loop to draw the tiling. The
CTis restored after drawing each row, so it returns to the starttabtliaready to move up to start the next row.
In addition, the whole block of code is surrounded wigushCT () and apopCT(), so that after the tiling has
been drawn th€T is returned to its initial value, in case more drawing needs to be done.

cvs.pushCT(); /I so we can return here
cvs.translate2D(W, H); /Il position for the first motif
for(row = 0; row < 3; row++) // draw each row

{

cvs.pushCT();
for(col = 0; col < 4; col++)// draw the next row of motifs

motif();

cvs.translate2D(L, 0); // move to the right
}
cvs.popCT(); // back to the start of this row
cvs.translate2D(0, D); / move up to the next row

Chap 5. Transformations 9/28/99 page 43



cvs.popCT(); // back to where we started

Figure 5.46. Drawing a hexagonal tiling.

Example 5.5.6. Using modeling transformations in a CAD programSome programs must draw many
instances of a small collection of shapes. Figure 5.47 shows the exd&ngp@XD program that analyzes the
behavior of an interconnection of digital logic gates. The user can construmtitlwyr“picking and placing”
different gates at different places in the work area, possibly vifdratit sizes and orientations. Each picture of
the object in the scene is callediastance of the object. A single definition of the object is given in a
coordinate system that is convenient for that object shape, caltedstsr coordinate system.The
transformation that carries the object from its own master coordigsiiem to world coordinates to produce an
instance is often calledraodeling transformation.

Create
Connect
Delete

Simulatg

Quit

Work area
Figure 5.47. Creating instances in a pick-and-place application.

Figure 5.48 shows two logic gates, each defined once in its own roastdinate system. As the user creates
each instance of one of these gates, the appropriate modeling tratisfoisngenerated that orients and
positions the instance. The transformation might be stinegly as a set of parameters, gy, dx, dy, with

the understanding that the modeling transformation would alwaysstofisi

1. A scaling by factoS
2. Arotation through anglé
3. A translation throughd, dy)

performed in that order. A list is kept of the gates in the circuit, along with thefdraration parameters of each
gate.

Figure 5.48. Each gate type is defined in its own coordinate system.

Chap 5. Transformations 9/28/99 page 44



Whenever the drawing must be refreshed, each instance is drawn in turn, withpttenpodeling
transformation applied. Code to do this might look like:

clear the screen

for(i = 0; i < numberOfGates; i++) // for each gate

{
pushCT(); // remember the CT
translate2D(dx[i], dy[i]); // apply the transformation
rotate2D(A[i]);
scale2D( SJi], S[i]);
drawGate(typel[i]); // draw one of the two types
popCT(); // restore the CT

}

The CT is pushed before drawing each instance, so that it can be rafeerdue instance has been drawn. The
modeling transformation for the instance is determined by itswpeters, and then one of the two gate shapes is
drawn. The necessary code has a simple organization, because the bsizleg, @rienting, and positioning
each instance has been passed to the underlying tools that main@Ginaie its stack.

Practice Exercises.

5.5.1. Developing the Transformations.Supposing OpenGL were not available, detail how you would write
the routines that perform elementary coordinate system changes:

void scale2D(double sx, double sy);

void translate2D(double dx, double dy);

5.5.2. Implementing the transformation stackDefine, in the absence of OpenGL, appropriate data types for a

stack of transformations, and write the routipgshCT() andpopCT() .

5.5.3. A hexagonal tilingA hexagonal pattern provides a rich setting for tilings, sincdaeeaxagons fit

together neatly as in a beehive. Figure 5.49 shows 9 columns adagtgons. Here the hexagons are shown

empty, but we could draw interesting figures inside them.

a). Show that the length of a hexagon with raéfius also R.

b). Show that the centers of adjacent hexagons in a column aratedpartically by\/:_B R and adjacent

columns are separated horizontally big 82.

c). Develop code that draws this hexagonal tiling, upihCT () andpopCT() and suitable transformations to

keep track of where each row and column start.
Ay

[ N/ .
/ N N NS N\ _[x

Figure 5.49. A simple hexagonal tiling.

5.6. Drawing 3D Scenes with OpenGL
We introduced the drawing of 2D objects in Chapter 3, developing a simgd€elavas This class provides
functions that establish a window and viewport, and that do line dratiaggh moveTo() andlineTo (). So
far in this chapter we have added the notion of2fieand provided functions that perform 2D rotations,
scalings, and translations. These 2D transformations are really just spsemof 3D transformations: they
basically ignore the third dimension.

Chap 5. Transformations 9/28/99 page 45



In this section we examine how 3D transformations are used in an Opaséd firogram. The main emphasis
is on transforming objects in order to orient and position them @edi@sa 3D scene. Not surprisingly it is all
done with matrices, and OpenGL provides the necessary funatibngid the required matrices. Further, the
matrix stack maintained by OpenGL makes it easy to set up a transforfoatiore object, and then “back up”
to a previous transformation, in preparation for transforming anotiject.

It is very satisfying to build a program that draws different scenag astollection of 3D transformations.
Experimenting with such a program also improves your ability to visialhat the various 3D transformations
do. OpenGL makes it easy to set up a “camera” that takes a “snapshot” of thesoen@drticular point of
view. The camera is created with a matrix as well, and we study in dethihpte€ 7 how this is done. Here we
just use an OpenGL tool to set up a reasonable camera, so that attenkierfazarssed on transforming objects.
Granted we are using a tool before seeing exactly how it operates, bugdffeglaigh: you can make
impressive pictures of 3D scenes with a few simple calls to OpenGLdugcti

5.6.1. An overview of the viewing process and the graphics pipeline.

All of our 2D drawing so far has actually used a special case of 3D gehbased on a simple “parallel
projection”. We have been using the “camenajgested in Figure 5.50. The “eye” that is viewing the scene
looks along the z-axis at the “window”, a rectangle lying inaplane. Theview volume of the camera is a
rectangular parallelepiped, whose four side walls are determinee bpittier of the window, and whose other
two walls are determined byrear planeand afar plane. Points lying inside the view volume are projected
onto the window along lines parallel to the z-axis. This is equivtdesimply ignoring their z-component, so
that the 3D pointx; yi, ) projects toXy, y1, 0). Points lying outside the view volume are clipped off. A
separat&iewport transformation maps the projected points from the window to the viewport on thiagisp
device.

Figure 5.50. Simple viewing used in OpenGL for 2D drawing.

Now we move into 3D graphics and place 3D objects in a scene. For the eXaenpleg& continue to use a
parallel projection. (The more realistic perspective projection, fachwmore remote objects appear smaller than
nearby objects, is described in Chapter 7.) Therefore we @sarie camera as in Figure 5.50, but allow it to
have a more general position and orientation in the 3D scenelentorproduce better views of the scene.

Figure 5.51 shows such a camera immersed in a scene, The scene consistsnlotwhich lies outside the
view volume. The image produced by this camera is also shown.

Figure 5.51. A camera to produce parallel views of a scene.

We saw in the previous section that OpenGL provides the three fungiBuaded(..),

glRotated(..), and glTranslated(..) for applying modeling transformations to a shape. The
block in Figure 5.51 is in fact a cube that has been stretcheddr@ateshifted as shown. OpenGL also
provides functions for defining the view volume and its positiothé scene.

The graphics pipeline implemented by OpenGL does its major work throagrix transformations, so we first
give insight into what each of the matrices in the pipeline does. At this pisifrniportant only to grasp the
basic idea of how each matrix operates: in Chapter 7 we give a detadessibn. Figure 5.52 shows the
pipeline (slightly simplified). Each vertex of an object is passed thrdug pipeline with a call such as
glVertex3d(x, v, z) . The vertex is multiplied by the various matrices shown, it is etippnecessary,
and if it survives clipping it is ultimately mapped onto the viewporthBectex encounters three matrices:

Chap 5. Transformations 9/28/99 page 46



Figure 5.52. The OpenGL pipeline (slightly simplified).

Themodelview matrix;
Theprojection matrix;
Theviewport matrix;

Themodelviewmatrix basically provides what we have been callingGfelt combines two effects: the
sequence of modeling transformations applied to objects, an@dutiséormation that orients and positions the
camera in space (hence its peculiar naméelviey. Although it is a single matrix in the actual pipeline, it is
easier to think of it as the product of two matrices, a modeling mMfréxd a viewing matri¥. The modeling
matrix is applied first, and then the viewing matrix, so the modelview matiixfact the produc¢M (why?).

Figure 5.53 suggests what tleandV matrices do, for the situation introduced in Figure 5.51, where a camera
“looks down” on a scene consisting of a block. Part a shows a umitcenitered at the origin. A modeling
transformation based dv scales, rotates, and translates the cube into block showrt m part b also shows

the relative position of the camera’s view volume.

a). before model b). after model aftec)model view

Figure 5.53. Effect of the modelview matrix in the graphics pipediheBefore the transformations. b). After the
modeling transformation. c). After the modelview transformation.

TheV matrix is now used to rotate and translate the block into a new positierspécific transformation used

is that which would carry the camera from its position in the sceit®“@eneric” position, with the eye at the
origin and the view volume aligned with th@xis, as shown in part c. The vertices of the block are now
positioned (that is, their coordinates have the proper valudisaisprojecting them onto a plane such as the near
plane yields the proper values for displaying the projected image. Sattie Vhin fact effects a change of
coordinates of the scene vertices into the camera’s coordintgmsy€amera coordinates are sometimes also
calledeye coordinates)

In the camera coordinate system the edges of the view volume are parhiéed, y-, andz-axes. The view volume
extends froneft toright in x, from bottomtotop iny, and from nearto far in z, as shown. When the vertices of
the original cube have passed through the entire modelview matrixariaéycated as shown in part c.

Theprojection matrix scales and shifts each vertex in a particular way, so that all those thatketiresview
volume will lie inside astandardcubethat extends from -1 to 1 in each dimenfofWhen perspective
projections are being used this matrix does quite a bit more, as weCGegpiter 7.) This matrix effectively
squashes the view volume into the cube centered at the origin. This eupariccularly efficient boundary
against which to clip objects, as we see in Chapter 7. Scaling tikeblinis fashion might badly distort it, of
course, but this distortion will be compensated for in the viewparstormation. The projection matrix also
reverses the sense of the z-axis, so that increasing valaswfrepresent increasing values of depth of a point
from the eye. Figure 5.54 shows how the block is transformed into aediffgliock by this transformation.

Figure 5.54. Effect of the projection matrix (for parallel projettjo

(Notice that the view volume of the camera need never be created ascaitsadfe It is defined only as that
particular shape that the projection matrix converts into the standbed)

Clipping is now performed, which eliminates the portion of the bloaklibs outside the standard cube.
Finally, theviewport matrix maps the surviving portion of the block into a “3D viewport”. This matraps the

standard cube into a block shape whoaady values extend across the viewport (in screen coordinates), and
whosez-component extends from 0 to 1 and retains a measure of the €ppthtpas shown in Figure 5.55.

12 coordinates in this system are sometimes cilietializedDeviceCoordinates

Chap 5. Transformations 9/28/99 page 47



Figure 5.55. Effect of the viewport transformation.

This overview has outlined how the whole OpenGL graphics pipeline epesiiowing that transformations are
a central ingredient. Each vertex of an object is subjected to a sequence ofrtratishs that carry it from
world coordinates into eye coordinates, into a neutral system $peleisigned for clipping, and finally into the
right coordinate system for proper display. Each transformatiefiected by a matrix multiplication.

Aside: Some important details of the pipeline have been suppressedfinsthiserview. When perspective
projections are used we need to include a “perspective division” that cagitatiza property of homogeneous
coordinates. And of course many interesting details lurk in thetis of actually rendering the image, such as
computing the color of pixels “in between” vertices, and checking for progdeimisurface removal. These are
all addressed in later chapters.

5.6.2. Some OpenGL Tools for Modeling and Viewing.
We now see what functions OpenGL provides for modeling and setting the camdelnayato use them.

1). Three functions are used to set modeling transformations.

The following functions are normally used to modify the modelview matrilhesonodelview matrix is first
made “current” by executingiiMatrixMode (GL MODELVIEW

glScaled(sx, sy, sz); Postmultiply the current matrix by a matrix that performs a scalirgx by
X, by syiny, and byszin z Put the result back in tleirrentmatrix.

glTranslated(dx, dy, dz); Postmultiply the current matrix by a matrix that performs a
translation bydxin x, by dyiny, and bydzin z; Put the result back in tleirrentmatrix.

glRotated(angle, ux, uy, uz); Postmultiply the current matrix by a matrix that performs a
rotation throughangledegrees about the axis that passes through the origin and theupgirgt (2.13 Put
the result back in theurrentmatrix. Equation 5.33 shows the matrix used to perform the rotation.

2). Setting the camera in OpenGL (for a parallel projection).

glOrtho(left,right,bott,top,near,far) ; Establishes as a view volume a parallelipiped that
extends frork* left toright in x, frombott totop iny, and fromrear to far inz (Since this
definition operates in eye coordinates, the camera’s eye is at the origingldokvn the negativeaxis.) This
function creates a matrix and postmultiplies the current matrix by it. (We shOlaipter 7 precisely what
values this matrix contains.)

Thus to set the projection matrix use:

gIMatrixMode(GL_PROJECTION); /I make the projection matrix current
glLoadldentity(); /I set it to the identity matrix
glOrtho(left,right,bottom,top,near,far); // multiply it by the new matrix

Notice the minus signs above: because the default camera is loced@gin looking down the negatize
axis, using a value of 2 forear means to place the near plane at-2, that is, 2 units in front of the eye.
Similarly, using 20 fofar places the far plane 20 units in front of the eye.

3). Positioning and aiming the camera.

13 positive values adngleproduce rotations that are CCW as one looks along the axis from theupoing, (12) towards the origin.
14 Al parameters oflOrtho () are of typeGLdouble .

Chap 5. Transformations 9/28/99 page 48



OpenGL offers a function that makes it easy to set up a basic camera:

gluLookAt(eye.x, eye.y, eye.z, look.x, look.y, look.z, up.x, up.y, up.z);
Creates the view matrix and postmultiplies the current matrix by it.

It takes as parameters the eye positaye , of the camera and the look-at polpgk . It also takes an
approximate “up” directionyp. Since the programmer knows where an interesting part of the scenatisdsit
it is usually straightforward to choose reasonable valuesyer andlookAt for a good first view. Andip is
most often set to (0, 1, 0) to suggest an “up” direction parallel tp-#xes. Later we develop more powerful
tools for setting up a camera and for interactively “flying it” ireaimation.

We want this function to set thépart of the modelview matriXM. So it is invoked before any modeling
transformations are added, since subsequent modelingomaagibns will postmultiply the modelview matrix.
So to usgluLookAt () follow the sequence:

gIMatrixMode(GL_MODELVIEW); /I make the modelview matrix current
glLoadldentity(); /I start with a unit matrix
gluLookAt(eye.x, eye.y, eye.z, I/l the eye position

look.x, look.y, look.z, //the “look at” point

up.x, up.y, up.z) // the up direction

We discuss how this function operates in Chapter 7, and also devaleflenible tools for establishing the
camera. For those curious about what vafiiesookAt () actually places in the modelview matrix, see the
exercises.

Example 5.6.1: Set up a typical cameraCameras are often set to “look down” on the scene from some nearby
position. Figure 5.56 shows the camera with its eye situateat (4,4,4) looking at the origin witthookAt
=(0,1,0). Theup direction is set taip = (0, 1, 0). Suppose we also want the view volume to have a width of
6.4, a height of 4.8 (so its aspect ratio is 640/480), and teaetto 1 andar to 50. This camera would be
established using:

Figure 5.56. Setting a camera wifluLookAt()

gIMatixMode(GL_PROJECTION); // set the view volume

glLoadldentity();

glOrtho(-3.2, 3.2, -2.4, 2.4, 1, 50);

gIMatrixMode(GL_MODELVIEW); // place and aim the camera

glLoadldentity();

gluLookAt(2, 4,5, 0,0, 0, 0, 1, 0);

The exercises show the specific values that get placed in the modelview matrix.

Practice Exercises

5.6.1. What doegluLookAt () do? We know thagluLookAt () builds a matrix that converts world
coordinates into eye coordinates. Figure 5.57 shows the cameca@sliaate system suspended in the world,
with its origin ateye and oriented according to its three mutually perpendicular unit vegterandn. The eye
is “looking” in the direction A. gluLookAt () uses the parametezge look, andup to creatay, v, andn
according to

Figure 5.57*. Converting from world to camera coordinates.

Chap 5. Transformations 9/28/99 page 49



n =eye- look

u=up’' n (5.38)
v=n_u
and then normalizes all three of these to unit length. It builds the matrix
u, u, u, d,
Vv, vy, d
"~ n, n, n, d,
O 0 0 1

where the poind has componen{@, , d,, d,) = (- ey&u,- eye/,- eye).
a). Show thati, v, andn are mutually perpendicular.
b). Show that matri¥ properly converts world coordinates to eye coordinate by shotatdt tmapeyeinto
the origin (0,0,0,T) u intoi = (1,0,0,0)v intoj = (0,1,0), andh intok = (0,0,1).
¢). Show for the caseye= (4, 4, 4)JookAt= (0,1,0), andip = (0,1,0) that the resulting matrix is:
70711 0 -.70711 0
-.3313 .88345 - . 3313 -. 88345
6247 4685 6247 - 6872

0 0 0 1
5.6.2. Inquiring of the values in a matrix in OpenGL.Print out the values in the modelview matrix to test
some of the assertions made about how it is formed. To see what dsiistitre modelview matrix in OpenGL
define an arragLfloat mat[16] and usa@lGetFloatv  (GL_MODELVIEW_MATRIX,mat)which
copies intanat[] the 16 values in the modelview matmi][j] is copied into the elementat[4j+i]
fori,j=0,1,..,3.

5.6.3. Drawing Elementary Shapes Provided by OpenGL

We see in the next chapter how to create our own 3D objects, hig pbint we need some 3D objects to draw, in order to
experiment with setting and using cameras. The GLUT provides several redegabjects. These include a sphere, a
cone, a torus, the five Platonic solids (discussed in Chapter 6),eafahtbus teapot. Each is available as a “wireframe”
model and as a “solid” model with faces that can be shaded.

cube: glutwWireCube(GLdouble size); Each side is of lengtkize

sphere: glutWireSphere(GLdouble radius, GLint nSlices, GLint nStacks)

torus: glutWireTorus(GLdouble inRad, GLdouble outRad, GLint nSlices, GLint nStacks)
teapot: glutWireTeapot(GLdouble size)

There is also glutSolidCube (), glutSolidSphere (), etc., that we use later. The shape of the torus is determined |
inner radiusnRad and outer radiusutRad . The sphere and torus are approximated by polygonal faces, and yaljucan &
parametergSlices andnStacks to specify how many faces to use in the approximati@lices is the number of
subdivisions around theaxis, anchStacks is the number of ‘bands” along tkexis, as if the shape were a stacksfa
disks.

Four of the Platonic solids (the fifth is the cube, already pregente
tetrahedron:  glutWireTetrahedron()
octahedron:  glutWireOctahedron()
dodecahedron: glutwireDodecahedron()
icosahedron: glutWirelcosahedron()

All of the shapes above are centered at the origin.

cone:  glutWireCone(GLdouble baseRad, GLdouble height, GLint nSlices, GLint nStac

Chap 5. Transformations 9/28/99 page 50



tapered cylinder: gluCylinder(GLUquadricObj * qobj, GLdouble baseRad, GLdouble topRad ,
GLdouble height, GLint nSlices, GLint nStacks)

The axes of the cone and tapered cylinder coincide witlz-ivds. Their bases rest on the 0 plane, and they extendZze
height along thez-axis. The radius of the cone and tapered cylindee=dl is given byaseRad . The radius of the tapere
cylinder atz = height istopRad .

Thetapered cylinder is actually &amily of shapes, distinguished by the valuéopRad . WhentopRad is 1 there is ncet
this is the classicylinder. WhentopRad is 0 the tapered cylinder is identical to tome

Note that drawing the tapered cylinder in OpenGL requires sottna@ work, because it is a special case of a quadric surfac
we shall see in Chapter 6. To draw it you must 1) define a new quadiit, oBjeset the drawing styl&LU_LINE for a
wireframe,GLU FILL for a solid rendering), and 3). draw the object:

GLUquadricObj * gobj = gluNewQuadric(); /l make a quadric object
gluQuadricDrawStyle(gqobj,GLU_LINE); /I set style to wireframe
gluCylinder(qobj, baseRad, topRad, nSlices, nStacks); // draw the cylinder

Figure 5.58. Shapes available in the GLUT.

We next employ some of these shapes in two substantial examples tharnfagiisg affine transformations to
model and view a 3D scene. The complete program to draw each scene is given. A goéatsight can be
obtained if you enter these programs and produce the figures, and them eféecttof varying the various
parameters.

Example 5.6.2: A scene composed of wireframe objects.

Figure 5.59 shows a scene with several objects disposed at the cbeerst @ube. The cube has one corner at
the origin. Seven objects appear at various corners of the cube, all dravivefeames.

The camera is given a view volume that extends from -2 toy2with an aspect ratio of aspect = 640/480. Its
near plane is @l = 0.1, and its far plane is &t = 100. This is accomplished using:

glOrtho(  -2.0* aspect, 2.0* aspect, -2.0, 2.0, 0.1, 100 );
The camera is positioned widye= (2, 2.2, 3)JookAt= (0, 0, 0), andip = (0, 1, 0) (parallel to thg-axis), using:

gluLookAt( 2.0, 2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0 );

Chap 5. Transformations 9/28/99 page 51



Figure 5.59. Wireframe drawing of various primitive shapes.

Figure 5.60 shows the complete program to produce the drawingadih€) routine initializes a 640 by 480 pixel screen
window, sets the viewport and background color, and spediptayWire () as the display function to be called to
perform the drawing. IdisplayWire () the camera shape and position are established first. Thenlgachi® drawn in
turn. Most objects need their own modeling matrix, in order ste@nd position them as desired. Before each modeling
transformation is establishedgbPushMatrix () is used to member the current transformation, and after the oagbeh
drawn this prior current transformation is restored wigtRopMatrix (). Thus the code to draw each object is imbedded i
aglPushMatrix (), glPopMatrix () pair. Check each transformation carefully to see that it places its ohijeetmbper
place.

Also shown in the figure are thxe, y-, andz- axes drawn with conical arrow heads. Displaying the underlyiogttate
system can help to orient the viewer. To drawxtiagis, thez-axis is rotated 0about they-axis to form a rotated system, an
the axis is redrawn in its new orientation. Note that this axis is dratowtimmersing it in glPushMatrix (),

glPopMatrix () pair, so the next rotation to produce yhaxis takes place in the already rotated coordinate system. Chec
that it's the proper rotation.

#include <windows.h> //suitable when using Windows 95/98/NT
#include <gl/Gl.h>
#include <gl/Glu.h>
#include <gl/glut.h>
[1<<<<<<<LLLLLLLLLLLKL XIS SO>>>SSSS>SS>>>
void axis(double length)
{ /I draw a z-axis, with cone at end
glPushMatrix();
glBegin(GL_LINES);
glVertex3d(0, 0, 0); glVertex3d(0,0,length); // along the z-axis
glEnd();
glTranslated(0, 0,length -0.2);
glutWireCone(0.04, 0.2, 12, 9);
glPopMatrix();

/l<<<<<<ggLLL<<<<<< displayWire >>>>>>>>>>>>>>>>>>>>>>
void displayWire(void)

gIMatrixMode(GL_PROJECTION); // set the view volume shape
glLoadldentity();

Chap 5. Transformations 9/28/99 page 52



glOrtho(-2.0*64/48.0, 2.0*64/48.0, -2.0, 2.0, 0.1, 100);
gIMatrixMode(GL_MODELVIEW); // position and aim the camera
glLoadldentity();

gluLookAt(2.0, 2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

glClear(GL_COLOR_BUFFER_BIT); // clear the screen
glColor3d(0,0,0: // draw black lines

axis(0.5); Il z-axis
glPushMatrix();

glRotated(90, 0,1.0, 0);

axis(0.5); Il y-axis
glRotated(-90.0, 1, 0O, 0);
axis(0.5); Il z-axis

glPopMatrix();

glPushMatrix();

glTranslated(0.5, 0.5, 0.5); // big cube at (0.5, 0.5, 0.5)
glutWireCube(1.0);

glPopMatrix();

glPushMatrix();

glTranslated(1.0,1.0,0); Il sphere at (1,1,0)
glutWireSphere(0.25, 10, 8);

glPopMatrix();

glPushMatrix();

glTranslated(1.0,0,1.0); /l cone at (1,0,1)
glutWireCone(0.2, 0.5, 10, 8);

glPopMatrix();

glPushMatrix();

glTranslated(1,1,1);
glutWireTeapot(0.2); // teapot at (1,1,1)
glPopMatrix();

glPushMatrix();

glTranslated(0, 1.0 ,0); // torus at (0,1,0)
glRotated(90.0, 1,0,0);
glutWireTorus(0.1, 0.3, 10,10);
glPopMatrix();

glPushMatrix();

glTranslated(1.0, 0 ,0); // dodecahedron at (1,0,0)
glScaled(0.15, 0.15, 0.15);
glutwWireDodecahedron();

glPopMatrix();

glPushMatrix();

glTranslated(0, 1.0 ,1.0); // small cube at (0,1,1)
glutWireCube(0.25);

glPopMatrix();

glPushMatrix();

glTranslated(0, 0 ,1.0); // cylinder at (0,0,1)
GLUquadricObj * qobj;

gobj = gluNewQuadric();
gluQuadricDrawStyle(gqobj,GLU_LINE);
gluCylinder(qobj, 0.2, 0.2, 0.4, 8,8);
glPopMatrix();

glFlush();

[l<<<<<<<LLLLLLLLLLLLKLLK MAIN >>>>>>>5555>555>5>>>>>>>>>>>>>>
void main(int argc, char **argv)

{

Chap 5. Transformations 9/28/99 page 53




glutinit(&argc, argv);

glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB );
glutinitWindowSize(640,480);

glutinitWindowPosition(100, 100);
glutCreateWindow("Transformation testbed - wireframes");
glutDisplayFunc(displayWire);

glClearColor(1.0f, 1.0f, 1.0f,0.0f); // background is white
glViewport(0, 0, 640, 480);

glutMainLoop();

}

Figure 5.60. Complete program to draw Figure 5.65 using OpenGL.

Notice that the sides of the large cube that are parallel in 3D are alsyelisps parallel. This is a result of using alelr
projection. The cube looks slightly unnatural because we are usedhip theeworld with a perspective projection. As we se
in Chapter 7, if a perspective projection were used insteae, plaesllel edges would not be drawn parallel.

Example 5.6.3. A 3D scene rendered with shading.

We develop a somewhat more complex scene to illustrate further themedading transformations. We also show how eas
OpenGL makes it to draw much more realistic drawings of solid shpgcincorporating shading, along with proper hidden
surface removal.

Two views of a scene are shown in Figure 5.61. Both views use a caineygls&ookAt(2.3, 1.3, 2,
0, 0.25, 0, 0.0,1.0,0.0) . Part a uses a large view volume that encompasses the whole scene; part b
uses a small view volume that encompasses only a small portion of teethesaby providing a close-up view.

The scene contains three objects resting on a table in the corner of a “room”. Eadhreiethmalls is made by flattening a
cube into a thin sheet, and moving it into position. (Again, they $omewhat unnatural due to the use of a parallel
projection.) The “jack” is composed of three stretched spheregeatiahright angles plus six small spheres at their ends.

Figure 5.61. A simple 3D scene - a). Using a large view volume. b). Usimglaview volume.

The table consists of a table top and four legs. Each of the table’s five piecethésthat has been scaled to the desiasl
and shape. The layout for the table is shown in Figure 5.62. It is ba$mar garameters that characterize the size ofaits p
topwidth , topThick ,legLen , andlegThick . AroutinetableLeg () draws each leg, and is called four times withi
the routinetable () to draw the legs in the four different locations. The diffepemameters used produce different modelin
transformations withitableLeg (). As always, @lPushMatrix (), glPopMatrix () pair surrounds the modeling
functions to isolate their effect.

a). b). \

Chap 5. Transformations 9/28/99 page 54



Figure 5.62. Designing the table.

The complete code for this program is shown in Figure 5.63. Note thaotlt® \&rsion of each shape, such as
glutSolidSphere (), is used here, rather than the “wire” version. Check the assortefbinaations used to orient and
position each object in the scene. Check the jack model parycdiars example is designed to whet your appetite for ¢ryin
out scenes on your own, practicing with transformations.

The code also shows the various things that must be done to trzdee gmages. The position and properties of a light
source must be specified, along with certain properties of the objedtgles) in order to describe how they reflect light.
Since we discuss the shading process in Chapter 8 we just present thefuagtion calls here; using them as shown will
generate shading.

#include <windows.h>

#include <iostream.h>

#include <gl/Gl.h>

#include <gl/Glu.h>

#include <gl/glut.h>

JI<<<<gggggg<<<< wall >>>>>>>>>>>>>>>>

void wall(double thickness)

{ /I draw thin wall with top = xz-plane, corner at origin
glPushMatrix();
glTranslated(0.5, 0.5 * thickness, 0.5);
glScaled(1.0, thickness, 1.0);
glutSolidCube(1.0);
glPopMatrix();

/l<<<<<<<<c<<<<<<<< tablelLeqg >>>>>>>>>>>>>>>>>>>
void tableLeg(double thick, double len)
{

glPushMatrix();
glTranslated(0, len/2, 0);
glScaled(thick, len, thick);
glutSolidCube(1.0);
glPopMatrix();

/<<« jack part >>>>>>>>>>>>>
void jackPart()
{ /I draw one axis of the unit jack - a stretched sphere
glPushMatrix();
glScaled(0.2,0.2,1.0);
glutSolidSphere(1,15,15);
glPopMatrix();
glPushMatrix();
glTranslated(0,0,1.2); // ball on one end
glutSolidSphere(0.2,15,15);
glTranslated(0,0, -2.4);
glutSolidSphere(0.2,15,15); // ball on the other end
glPopMatrix();

/l<<<<<<<gggg<LLL< jack >>>>>5555555>>>>>>>>
void jack()
{ /I draw a unit jack out of spheroids

glPushMatrix();

jackPart();

glRotated(90.0, 0, 1, 0);

jackPart();

glRotated(90.0, 1,0,0);

jackPart();

glPopMatrix();

Jl<<<<<ggg<<<LLLLLL<<<L << table >>>>>>>>5555555555>>

Chap 5. Transformations 9/28/99 page 55



void table(double topWid, double topThick, double legThick, double legLen)
{ /I draw the table - a top and four legs
glPushMatrix(); // draw the table top
glTranslated(O, legLen, 0);
glScaled(topWid, topThick, topWid);
glutSolidCube(1.0);
glPopMatrix();
double dist = 0.95 * topWid/2.0 - legThick / 2.0;
glPushMatrix();
glTranslated(dist, 0O, dist);
tableLeg(legThick, legLen);
glTranslated(0, 0, -2 * dist);
tableLeg(legThick, legLen);
glTranslated(-2 * dist, 0, 2*dist);
tableLeg(legThick, legLen);
glTranslated(0, 0, -2*dist);
tableLeg(legThick, legLen);
glPopMatrix();

fl<<<<<<<<<<<e<<<<<<<< displaySolid >>>>>>>>>>>>>>>>>>>>>>
void displaySolid(void)

/Iset properties of the surface material

GLfloat mat_ambient[] = { 0.7f, 0.7f, 0.7f, 1.0f}; // gray
GLfloat mat_diffuse[] = {0.6f, 0.6f, 0.6f, 1.0f};

GLfloat mat_specular[] = {1.0f, 1.0f, 1.0f, 1.0f};

GLfloat mat_shininess[] = {50.0f};
gIMaterialfv(GL_FRONT,GL_AMBIENT,mat_ambient);
gIMaterialfv(GL_FRONT,GL_DIFFUSE, mat _diffuse);
gIMaterialfv(GL_FRONT,GL_SPECULAR,mat_specular);
gIMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess);
/1 set the light source properties

GLfloat lightIntensity[] = {0.7f, 0.7f, 0.7f, 1.0f};

GLfloat light_position[] = {2.0f, 6.0f, 3.0f, 0.0f};
glLightfv(GL_LIGHTO, GL_POSITION, Ilght position);
glLightfv(GL_LIGHTO, GL_DIFFUSE, Ilghtlnten5|ty)

/l set the camera

gIMatrixMode(GL_PROJECTION);

glLoadldentity();

double winHt = 1.0; // half-height of the window
glOrtho(-winHt*64/48.0, winHt*64/48.0, -winHt, winHt, 0.1, 100.0);
gIMatrixMode(GL_MODELVIEW);

glLoadldentity();

gluLookAt(2.3, 1.3, 2, 0, 0.25, 0, 0.0,1.0,0.0);

/I start drawing
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); // clear the screen
glPushMatrix();

glTranslated(0.4, 0.4, 0.6);

glRotated(45,0,0,1);

glScaled(0.08, 0.08, 0.08);

jack(); /l draw the jack
glPopMatrix();

glPushMatrix();

glTranslated(0.6, 0.38, 0.5);

glRotated(30,0,1,0);

glutSolidTeapot(0.08); I/l draw the teapot
glPopMatrix();

glPushMatrix();

glTranslated(0.25, 0.42, 0.35);// draw the sphere
glutSolidSphere(0.1, 15, 15);

glPopMatrix();

glPushMatrix();

glTranslated(0.4, 0, 0.4);

Chap 5. Transformations 9/28/99 page 56



table(0.6, 0.02, 0.02, 0.3); // draw the table
glPopMatrix();

wall(0.02); /[ wall #1: in xz-plane
glPushMatrix();

glRotated(90.0, 0.0, 0.0, 1.0);

wall(0.02); /[ wall #2: in yz-plane
glPopMatrix();

glPushMatrix();

glRotated(-90.0,1.0, 0.0, 0.0);

wall(0.02); /[ wall #3: in xy-plane
glPopMatrix();

glFlush();

[l<<<<<<<LLLLLLLLLLLLLLK MAIN >>>>>>>5555>555>>5>>>>>>>>>>>>>
void main(int argc, char **argv)

glutinit(&argc, argv);
glutinitDisplayMode(GLUT_SINGLE | GLUT_RGB| GLUT_DEPTH);
glutinitWindowSize(640,480);
glutinitWindowPosition(100, 100);
glutCreateWindow("shaded example - 3D scene");
glutDisplayFunc(displaySolid);
glEnable(GL_LIGHTING); // enable the light source
glEnable(GL_LIGHTO);

glShadeModel(GL_SMOQOTH);
glEnable(GL_DEPTH_TEST); // for hidden surface removal
glEnable(GL_NORMALIZE); // normalize vectors for proper shading
glClearColor(0.1f,0.1f,0.1f,0.0f); // background is light gray
glViewport(0, O, 640 480)

} glutMainLoop();

Figure 5.63. Complete program to draw the shaded scene.

Practice Exercises.

5.6.3. Inquiring of the values in a matrix in OpenGL.Test some of the assertions above that put specific
values into the modelview matrix. You can see what is stored in thdvievdenatrix in OpenGL by defining an
arrayGLfloat mat[16] and usinglGetFloatv  (GL_MODELVIEW_MATRIX,mat)which copies into
mat[] the 16 values in the modelview mattifi][j] is copied into the elementat[4j+i] ,fori,j=0
1,..3.

5.6.4. Reading a Scene Description from a File.
In the previous examples the scene was described through specific OpersGhatatbnsform and draw each
object, asin

glTranslated(0.25, 0.42, 0.35);
glutSolldSphere(O 1, 15, 15); // draw a sphere

The objects in the scene were therefore “hard-wired” into the program. Thid s@guoifying a scene is
cumbersome and error-prone. It is a boon when the designer can speoifjeitts in a scene through a simple
language, and place the description in a file. The drawing proggaomies a (much simpler) general-purpose
program: it reads a scene file at run-time and draws whatever dujeascountered in the file.

The Scene Description Language (SDL) described in Appendix 4 providesigool. We define &cene class
— also described in Appendix 4, and available on the book’s web sité supiparts the reading of an SDL file
and the drawing of the objects described in the file. It is verylsitopuse th&cene class in an application: a
global Scene object is created:

Scene scn; // create a scene object

Chap 5. Transformations 9/28/99 page 57



and theread () method of the class is called to read in a scene file:
scn.read("simple.dat"); // read the scene file & build an object list

Figure 5.64 shows the data structure fordbre object, after the following simple SDL file has been read.

Figure 5.64. An object of th&cene class.

I simple.dat: a simple scene having one light and four shapes

background 00 1 I give the scene a blue background
light298111 I put a white light at (9, 9, 9)

diffuse .9.1 .1 I make the following objects reddish
translate 35-2 sphere ! put a sphere at 35 -2
translate —4 —6 8 cone ! put a cone in the scene

translate 11 1 cube 'add a cube

diffuse 010 I make the following objects green

translate 40 5 2 scale .2 .2 .2 sphere !add a tiny sphere

The first line is a comment; comments extend to the end of the line.CEnis bas a bright blue background
color (red, green blue) = (0, 0, 1), a bright white (1, 1, 1) light situated at (2, 9, 8), anddiojects: two spheres,
a cone and a cube. Thght field points to the list of light sources, and ti# field points to the object list.
Each shape object has its own affine transforma#idhat describes how it is scaled, rotated, and positioned in
the scene. It also contains various data fields that specify its rhpteparties, that are important when we want
to render it faithfully as discussed in Chapter 8. Only the difietdis shown in the figure.

Once the light list and object list have been built, the applicationecater the scene:

scn.makeLightsOpenGL(),
scn.drawSceneOpenGL(); // render the scene using OpenGL

The first instruction passes a description of the light sources to Opé@in@lsecond uses the method
drawSceneOpenGL () to draw each object in the object list. The code for this methodyisiveple:

void Scene :: drawSceneOpenGL()

for(GeomObj* p = obj; p ; p = p->next)
p->drawOpenGL(); // draw it
}

It moves a pointer through the object list, calldrgwOpenGL() for each object in turn. It's a nice example of
using polymorphism which is a foundation-stone of object-oriented groging: Each different shape “knows”
how to draw itself: it has a methddawOpenGL () that calls the appropriate routine for that shape. So when
points to a sphere tligawOpenGL () routine for a sphere is called automatically; wpepoints to a cone the
drawOpenGL () routines for a cone is called, etc. Figure 5.65 shows the methods &pltere andCone
classes; they differ only in the final OpenGL drawing routine thealled. Each first passes the object’s material
properties to OpenGL, then updates the modelview matrix hdtlobject’s specific affine transformation. The
original modelview matrix is pushed and later restored, to proteonit fieing affected after this object has been
drawn.

}/0id Sphere :: drawOpenGL()
tellMaterialsGL(); //pass material data to OpenGL
glPushMatrix();
glMultMatrixf(transf.m); // load this object’s matrix
glutSolidSphere(1.0,10,12); // draw a sphere
glPopMatrix();

}
void Cone :: drawOpenGL()

Chap 5. Transformations 9/28/99 page 58



tellMaterialsGL();//pass material data to OpenGL

glPushMatrix();

glMultMatrixf(transf.m); // load this object’s matrix
glutSolidCone(1.0,1.0, 10,12); // draw a cone

glPopMatrix();
}

Figure 5.65. therawOpenGL () methods for two shapes.

Figure 5.66 shows the program that reads an SDL file and draws tfee Kde very short, (but of course the
code for the class&xene, Shape, etc. must be loaded as well). It reads the particular SDL file
myScenel.dat , which recreates the same scene as in Figure 5.63. Note that by simply chan &b file
that is read this program can drany scene described in SDL, without any changes in its code.

#include "basicStuff.h"
#include "Scene.h"

B GLOBALS ST
Scene scn; // construct the scene object
fl<<<<<<<<<<<<<<<<<< displaySDL >>>>>>>>>>>>>5>5>>>5>>>>>>

void displaySDL(void)
{

gIMatrixMode(GL_PROJECTION); //set the camera

glLoadldentity();

double winHt = 1.0; // half-height of the window
glOrtho(-winHt*64/48.0, winHt*64/48.0, -winHt, winHt, 0.1, 100.0);
gIMatrixMode(GL_MODELVIEW);

glLoadldentity();

gluLookAt(2.3, 1.3, 2, 0, 0.25, 0, 0.0,1.0,0.0);
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); /I clear screen

scn.drawSceneOpenGL();

} Il end of display

[1<<<<<<<LLLLLLLLLLLLLLK Main >>>>>55>>>55>>S55S>S5>>>>>>>>>>

void main(int argc, char **argv)

{
glutinit(&argc, argv);

glutinitDisplayMode(GLUT_RGB |GLUT_DEPTH);
glutinitWindowSize(640, 480);
glutinitWindowPosition(100, 100);
glutCreateWindow("read and draw an SDL scene");
glutDisplayFunc(displaySDL);
glShadeModel(GL_SMOQOTH);
glEnable(GL_DEPTH_TEST);
glEnable(GL_NORMALIZE);

glViewport(0, 0, 640, 480);

scn.read("myScenel.dat"); //read the SDL file and build the objects

glEnable(GL_LIGHTING);

scn.makeLightsOpenGL(); // scan the light list and make OpenGL lights

glutMainLoop();
}

Figure 5.66. Drawing a scene read in from an SDL file.

The SDL file that describes the scene of Figure 5.63 is shown in Figdtelbdefines the jack shape of nine

spheres by first definingjackPart

and then using it three times, as explained in Appendix 4. Similarly a leg

of the table is first defined as a unit, and then used four times.

I — myScenel.dat

light 20 60 30 .7 .7 .7 !put a light at (20,60,30),color:(.7, .7, .7)
ambient .7 .7 .7 ! set material properties for all of the objects

diffuse .6 .6 .6
specular111
exponent 50

def jackPart{ push scale .2 .2 1 sphere pop

Chap 5. Transformations

9/28/99 page 59




push translate 00 1.2 scale .2 .2
push translate 0 0 -1.2 scale .2 .2

| }

def jack{ push use jackPart
rotate 90 0 1 O use jackPart
rotate 90 1 0 0 use jackPart pop

}

def wall{push translate 1 .01 1 scale 1 .02 1 cube pop}
def leg {push translate 0 .15 O scale .01 .15 .01 cube pop}

def table{

push translate 0 .3 0 scale .3.01 .3 cube pop !table top
push

translate .275 0 .275 use leg

translate 0 0 -.55 use leg

translate -.55 0 .55 use leg

translate 0 0 -.55 use leg pop

sphere pop
sphere pop

(SN

Inow add the objects themselves

push translate .4 .4 .6 rotate 45 0 0 1 scale .08 .08 .08 use jack pop
push translate .25 .42 .35 scale .1 .1 .1 sphere pop

push translate .6 .38 .5 rotate 30 0 1 0 scale .08 .08 .08 teapot pop
push translate 0.4 0 0.4 use table pop

use wall
push rotate 90 0 0 1 use wall pop
push rotate -90 1 0 0 use wall pop

Figure 5.67. The SDL file to create the scene of Figure 5.63.

With a scene description language like SDL available, along with timoksad and parse it, the scene designer
can focus on creating complex scenes without having to work at theajgplicode level. The scene being
developed can be edited and tested again and again until it iSTiightode developer puts the initial effort into
constructing an application that can render any scene describablé.in SD

5.7. Summary of the Chapter.
Affine transformations are a staple in computer graphics, for theyafieified tool for manipulating graphical
objects in important ways. A designer always needs to scale, oridrgpaition objects in order to compose a
scene as well as an appropriate view of the scene, and affine transformakerthimsimple to manage in a
program.

Affine transformations convert one coordinate frame into anatinekwhen homogeneous coordinates are used,
an affine transformation is captured in a single matrix form. A sequenaelofransformations can be

combined into a single transformation whose matrix is simply theuptad the individual transformation
matrices. Significantly, affine transformations preserve straightseghe image of a line is another line, and
the image of a plane is a plane. This vastly simplifies working with lines anelsglaa program, where one
benefits from the simple representations of a line (its two endpeimisa plane (by three points or four
coefficients). In addition, parallelism is preserved, so thatlpbygiams map to parallelograms, and in 3D
parallelepipeds map to parallelepipeds. This makes it simplesualide the geometric effects of affine
transformations.

Three dimensional affine transformations are much more complex gia2fEhcounterparts, particularly when

it comes to visualize a combination of rotations. A given matan be viewed as three elementary rotations
through Euler angles, or a rotation about some axis, or simply afia that has special properties. (Its columns
are orthogonal unit vectors). It is often important to move betwesse tifferent forms.

OpenGL and other graphics packages offer powerful tools for manigu&atohapplying transformations. In
OpenGL all points are passed through several transformations, anddghanpmer can exploit this to define and

Chap 5. Transformations 9/28/99 page 60



manipulate a “camera”, as well as to size and position different objéata scene. Two of the matrices used by
OpenGL (the modelview and viewport transformations) defineaffimnsformations, whereas the projection
matrix normally defines a perspective transformation, to be exdrthioeoughly in Chapter 7. OpenGL also
maintains a stack of transformations, which make it easy for the sesige to control the dependency of one
object’s position on that of another, and to create objects thabraposed of several related parts.

The SDL language, along with the Scene and Shape classes, makie gimmpier to separate programming
issues from scene design issues. An application is developed ahcarttdraw any scene described by a list of
light sources and a list of geometric objects. This application is #eshaver and over again with different
scene files. A key task in the scene design process is applying the properigdmmsformations to each
object. Since a certain amount of trial and error is usually required, it is ¢envenbe able to express these
transformations in a concise and readable way.

The next section presents a number of Case Studies thattatmothe main ideas of the chapter and suggest
ways to practice with affine transformations in a graphics programeThege from plunging deeper into the
theory of transformations to actual modeling and rendering ettsbguch as electronic CAD circuits and robots.

5.8 Case Studies.

Case study 5.1. Doing your own transforming by the CT in Canvas.

(Level of Effort: II). It's easy to envision situations where you nimgiement the transformation mechanism
yourself, rather than rely on OpenGL to do it. In this Case Studagid the support of a current transformation
to the Canvas class for 2D drawing. This involves writing sevenatifins, those to initialize and alter t6&
itself:

void Canvas:: initCT(void);  // init CT to unit transformation
void Canvas:: scale2D(double sx, double sy);

void Canvas:: translate2D(double dx, double dy);

void Canvas:: rotate2D(double angle);

as well as others that are incorporated into moveTo()ieetlo () so that all points sent to them are “silently”
transformed before being used. For extra benefit add the stacknisectiar the CT as well, along with functions
pushCT () andpopCT(). Exercise your new tools on some interesting 2D modeling andradyawamples.

Case Study 5.2. Draw the star of Fig 5.39. using multiple rotations.
(Level of Effort: I). Develop a function that draws the polygon inirfigg5.39b that is one fifth of the star. Use it
with rotation transformations to draw the whole star.

Case Study 5.3. Decomposing a 2D Affine Transformation.

(Level of Effort: II). We have seen that some affine transformations can bessgd as combinations of others.
Here we “decompose” any 2D affine transformation into a combination of scalitafions, and translations.
We also show that a rotation can be performed by three successiv& slnéet gives rise to a very fast arc
drawing routine. Some results on what lurks in any 3D affinsfibamation are also discussed. We just
summarize results here.

Because an affine transformation is a linear transformation fetldwy an offset we omit the translation part of
the affine transformation, and focus on what a linear transformatioa vge 8ise 2 by 2 matrices here for
simplicity.

a). Two 2D linear transformations.

Consider the 2 by 2 matrM that represents a 2D linear transformation. Md¢tizan always be factored into a
rotation, a scaling , and a shear. Call the four scaladvislig the names, b, ¢, andd for brevity. Verify by direct
multiplication thatM is the product of the three matrices [martin82]:

Chap 5. Transformations 9/28/99 page 61



aea bp

. e 1 AadR
ea bo:gac+bd (1)290 ad- bcle R R~ (5.39)
e R Rﬂ

whereR :\/az + b2 . The leftmost matrix on the right hand side is recognized as g #eeariddle one as a
scaling, and the rightmost one as a rotation (why?).

Thusany 2D affine transformation is a rotation followed by a scaling followed byardollowed by a
translation.

An alternative decomposition, based on the so-called “Gram-Schmidt ghdeediscussed in Case Study 5.5.

- 35
Example 5.8.1.Decompose the matriM = gz 70 into the product of shear, scaling, and rotation matrices.
Solution: Check the following, obtained by direct substitution in Equatiof:5.3

v @ “H_@ 1 O 0 /5 -3/%
&2 7o €13/25 B0 34/%3/5 4/5p

b). A 2D Rotation is three shears.
Matrices can be factored in different ways. In fact a rotationixnzn be written as the product of three shear
matrices! [Paeth90] This leads to a particularly fast method forrparfg a series of rotations, as we will see.

Equation 5.40 shows a rotation represented as three successivelshaarse verified by direct multiplication.
It demonstrates that a rotation is a shegr followed by a shear iR, followed by a repetition of the first shear.

cos(a) sin(a)
-sin(a) cos(a)

:( é tania/Z)( -Sifll(a) 01 )( é tania/Z) (5.40)

Calling T =tan(a/2), andS = sin (a) show that we can write the sequence of operations that rotatexpgint (

asl®

X =T* y +X; {fIrSt Sheal’}

Yy =Y,

X' = X {second shear}
y” = y’ - S*X’1

X' = T* Y+ X {th|rd Shear}
yny — y”;

using primes to distinguish new values from old. But operation&’likex do nothing, so the primes are
unnecessary and this sequence reduces to:

X =X+T*y;
y =y-S*x {actual operations for the three shears}
X =X+T*y;

15Note thatsin(@) may be found quickly from tan(a/2) by one multiplication and one divisiea Appendix 2): S = (2T)/(1 +

%)

Chap 5. Transformations 9/28/99 page 62



If we have only one rotation to perform there is no advantageng gbout it this way. However, it becomes

very efficient if we need to do a succession of rotations through theasagige Two places where we need to do
this are 1). calculating the vertices ofragon — which are equispaced points around a circle, and 2). computing
the points along the arc of a circle.

Figure 5.68 shows a code fragment for calculating the positiangofnts around a circle. It loads the
successwe valuesddi * 2p/n + b), sin(i * 2p/n + b)) into the array of pointp]].
16

= tan(PI/n); /l tangent of half angle
S 2*T/(L+T*T); [l sine of angle
p[0].x = sin(b); [/l initial angle, vertex O

p[Ol.y = cos(b);
for(inti=1;i<n; i++)

plil.y = p[i-1].x * T + p[i-1].y; //1st shear
plil.x = p[i-1].x -S * p[i-1].y; //2nd shear
plil.y = p[i-1].x * T + p[i-1].y; //3rd shear

Figure 5.68. Building the vertices of an n-gon efficiently.

Figure 5.69 shows how to use shears to build a fast arc drawer. thdaesme job adrawArc() in Chapter
3, but much more efficiently, since it avoids the repetitive computafisim() andcoy).

void drawArc2(RealPoint ¢, double R,
double startangle, double sweep) // in degrees
{

#define n 30

#define RadPerDeg .01745329

double delang = RadPerDeg * sweep / n;

double T = tan(delang/2); // tan. of half angle
double S= 2*T/(L+T*T); /lsine of half angle
double snR = R * sin(RadPerDeg * startangle);
double csR = R * cos(RadPerDeg * startangle);
moveTo(c.X + cSR, c.y + snR);
for(inti=1;i<n;i++)

snR +=T *csR; // build next snR, csR pair
csR -=S * snR;

snR +=T *csR;

lineTo(c.x + csR, c.y + snR);

}

Figure 5.69. A fast arc drawer.

Develop a test program that uses this routine to draw arcs. Corgpeffeciency with arc drawers that compute
each vertex using trigonometry.

c). Is a shear “fundamental™?

One sometimes reads in the graphics literature that the funddelemantary transformations are the rotation,
scaling, and translation; shears seem to be second class citizenattiflicis may stem from the fact that any
shear can be decomposed into a combination of rotations and scalings. Miedo#iquation may be verified
by multiplying out the three matrices on the right [Greene90]:

P R AL -
-l 1+a2 al 0 ]ja ‘1aV1+_a2
a-3 1 (5.41)

16 Note: Some C environments do not suppani) directly. Usesin()/cos) - of course first checking that this denominator is not zero.

Chap 5. Transformations 9/28/99 page 63



The middle matrix is a scaling, while the outer two matrices (when combinetheiitale factors shown) are

rotations. For the left-hand rotation associate/ 1/+ 2 with coqa) and a/\/ 1+ & with sin(a) for some
anglea. Thustan(a) = -a. Similarly for the right-hand rotation associatefb) andsinb) for angleb, where
tan(b) = 1/a. Note thata andb are relatedb =a +p / 2 (why?).

Using this decomposition, write the shear in Equation 5.41 as a “rothgo a scaling then a rotation” to
conclude that every 2D affine transformation is the following sequereleroentary transformations:

Any affine transformation = Scale * Rotation * Scale * Rotation * Tatish (5.42)

Practice Exercises

5.8.1. A “golden” decomposition.Consider the special case of a “unit shear” where theaeriva in Equation
5.3.5is 1. What value muathave? Determine the two angiesndb associated with the rotations.

Solution: Since a must satisfy= 1 + 14, ais the golden rati6!. Thus

f 0
(1 0 :( coga) -sin(a) cogb) sin(b)
11 sin(a) cogqa) ol _sin(b) cogb)
J (5.43)

wherea = tan'l(f) =58.28° and =tan- 1(1f) = 31.72-
5.8.2. Unit ShearsShow that any shear incontains within it a unit shear. Decompose the shear given by

[ 7]

into the product of a scaling, a unit shear, and another scaling.
5.8.3. Seeing It GraphicallyDrawing upon the ideas in Exercise 5.8.1, draw a rectangle on gepph potate

it through - 58.2?3 scale it by {, 1f); and finally rotate it through 31.75ketch each intermediate result, and
show that the final result is the same parallelogram obtained wlemi¢fnal rectangle undergoes a unit shear.
5.8.4. Decompose a TransformatiorDecompose the transformation

Qx = 3Px-2Py+5

Qy = 4Px+ Py -6

into a product of rotations, scalings, and translations.

5.8.5. One reflection can always be in the x-axiShow that a rotation through andieabout the origin may
always be effected by a reflection in thaxis followed by a reflection in a line at angi®.

5.8.6. IsometriesA particularly important family of affine transformations in the stutigyonmetry are the
isometries(“same measure”), since they don’t alter the distance between two points and thes: iRtegny
two pointsP andQ the distanceTl[P) - T(Q)| is the same as the distariee Q| whenT() is an isometry. Show
that if T() is affine with matrixM , thenT is an isometry if and only if each row Mf considered as a vector is of
unit length, and the two rows are orthogonal.

Solution: Callr =P - Q. ThenT(P) - T(Q)| = PM +d - QM - d| = f M| = |fxm,, + rym,,, rxm,, + rym,)|.
Equating {M[2 to f |2 requiresm 2 *m 2=1,m 2 *m,_2=1, andn,m, *m,m =0, as claimed.

5.8.7. Ellipses Are Invariant.Show that ellipses are invariant under an affine transformati@t.ighfE is an
ellipse and ifT is an affine transformation, then the imageE) of the points irE also makes an ellipseint to
Solution: Any affine is a combination of rotations and scalings. When an ellipetaied it is still an ellipse, so
only the non-uniform scalings could possibly destroy the ellipseepiofso it is necessary only to show that an
ellipse, when subjected to a non-uniform scaling, is still an ellipse.

5.8.8. What else is invariantZonsider what class of shapes (perhaps a broader class than ellijpses)aist

to affine transformations. If the equatiffr,y)=0 describes a shape, show that after transforming it with

transformationl, the new shape is described by all points that safizfy) = f(T'l(x,y)) = 0. Then show the
details of this form wheff is affine. Finally, try to describe the largest class of shapes whichsierped under
affine transformations.

Case Study 5. 4. Generalized 3D Shears.

Chap 5. Transformations 9/28/99 page 64



(Level of Effort:ll) A shear can be more general than those discussed ionSee??. Asiggested by Goldman
[goldman 91] the ingredients of a shear are:

A plane through the origin having unit normal veator

A unit vectorv lying in the plane (thus perpendiculamtd;

An anglef.

Then as shown in Figure 5.70 pokhis sheared to poir@ by shifting it in directionv a certain amount. The
amount is proportional to both the distance at wRidies from the plane, and to thknGoldman shows that this
shear has the matrix representation:

Figure 5.70. Defining a shear in 3D.

mvx I’TLVy rﬂxvz6
M= +tan¢)gmyvX my, my,* (5.44)

s

€ m Vx I’nzvy I’nzvz 12

wherel is the 3 by 3 identity matrix, and an offset vectob.dbome details of the derivation are given in the
exercises.

Example 5.8.2 Find the shear associated with the plane having unit normal veetc(ﬂ.,l,l)/f?,: (0.577,

0.577, 0.577), unit vectar = (0, 0.707 -0.707), and andle= 30°.Solution: Note that lies in the plane as
required (why?). Applying Equation 9.9.5 we obtain:
a® 0408 -040% & 0.235 -0.23%

M=1+ 0.57%0 0.408 - 0.408—T = 80 1.235 - 0.235—;
e0 0.408 -0.40% e 0.235 0.764
Derive the shear matrix.We want to express the poi@tin Figure 5.73 in terms & and the ingredients of the

shear. The (signed) distanceRofrom the plane is given by?- m( considering® as a position vector pinned to
the origin). a). Put the ingredients together to obtain:

Q=P+ (Pm)tanf) v (5.45)
Note that points “on the other side” of the plane are sheared in the oppasitmujras we would expect.
Now we need to the second termPatimes some matrix. Use Appendix 2 to show #at is Pm', and

therefore that Q = P (| + taj(m' v), and that the shear matrix is€ tanf) m' v). Show that the matrim’ v
has the form:

am, o Fny, my, my,.o0
m'v = gmy VoV, V,) = g my, my, myz (5.46)
em g emy, my, my,g

Chap 5. Transformations 9/28/99 page 65



This is called theuter product (or tensor product) of m with v.

Practice Exercises.

5.8.9. Consistency with a simple sheaExpress the matrix for the shear associated with directiofi,0,0)
and the plane having normal vector (0, 1, 0). Show that this is eofdime elementary shear matrix given in
Equation 5.45, for any angte

5.8.10. Find the shearCompute the shear matrix for the shear that uses a norm&.577(1, -1, 1), direction
vectorv = 0.707(1,1,0), and angie= 45°. Sketch the vectors and plane involved, and sketch how a cube
centered at the origin with edges aligned with the coordinate axes igaffgcthe shear.

5.8.11. How Is a Three-Dimensional Shear Like a Two-Dimensional Tratation in Homogeneous
Coordinates?

Consider the specific shear:

d 0 ™
Q=PE0 1 O (5.47)
et s 1o

which alters the 3D poir® by shearing it along with factort owing toz and along with factors owing toz. If

P lies in thez= 1 plane with coordinatd3= (py, Py, 1), show thaP is transformed intop +t, Py +s, 1).

Hence it is simply shifted ir by amount and iny by amouns. Show that for any point in thee= 1 plane, this
shear is equivalent to a translation. Show that the matrix in Equad8ris identical to the homogeneous
coordinate form for a pure translation in two dimensions. This sporedlence helps reinforce how homogeneous
coordinates operate.

Case Study 5.5. Rotation about an Axis: The Constructive Approach.

(Level of Effort: Il) You are asked to fill in the details in the followirgrigdation of the rotation matrii®,(b) of
Equation 9.9.15. For simplicity we assumis a unit vector:| = 1. Denote the position vector based’doy
the namep, sop = P - O whereO is the origin of the coordinate system. Now projeontou to obtain vectoh,
as shown in Figure 9.9.8a.

a). Show it has the forim= (p - u) u. Define two perpendicular vectoasandb that lie in the plane of rotatioa:
=p-h,andb=u" a

b). Show that they are perpendicular, they have the same length, they bothdiplanth and thdt=u" (p -
h) simplifies tou”~ p. This effectively establishes a 2D coordinate system in the plane obmofsdtiw look
onto the plane of rotation, as in Figure 9.9.8b. The rotation ratates = cosb a + sinb b, so the rotated point
Qs given by:

Q=h+ cosb a+ sinb b, or using the expressions faandb,

Q=pcosb+ (1-codb)(p-uyu+sinbu” p) (5.48)

This is a rather general result, showing how the rotated Qaian be decomposed into portions albrand
along two orthogonal axes lying in the plane of rotation.

This form forQ hardly looks like the multiplication ¢ by some matrix, but it is because each of the three terms
is linear inp. Convert each of the terms to the proper form as follows:

¢). Replace with P to obtain immediatelp (cosb) = P (cosb) | wherel is the 3 by 3 identity matrix.

d). Use the result (Appendix 2) that a dot proguct can be rewritten a3 times a matrix:P u', to show that
(p-wu=P uTu whereuTuis an outer product similar to Equation 9.9.7.

e). Use the fact developed in Appendix 2 that a cross pradugt can also be written &times a matrix to

show thatu~ p = P Crosgu) where matrixCrosgc) is:

Chap 5. Transformations 9/28/99 page 66



@0 u, -uo
Cross{u)zg-uz 0 wut (5.49)

X
ey, -u Og
f). Put these together to obtain the matrix

R(b) =cos b | + (1 - cosb) uTu + sinb Crosgu)) (5.50)L7

M is therefore the sum of three weighted matrices. It surely is easier to lamilththproduct of five matrices as
in the classic route.
g). Write this out to obtain Equation 5.33.

Case Study 5.6. Decomposing 3D Affine Transformations.
(Level of Effort:Ill) This Case Study looks at several broad famitieaffine tansformations.

What is in a 3D Affine Transformation?

Once again we ignore the translation portion of an affine transfommeatis focus on the linear transformation
part represented by 3 x 3 mathik What kind of transformations are “imbedded” in it? It is somewhat more
complicated. Goldman[GEMSIII, p.108] shows that every $ddh the product of a scalirfy a rotatiorR , and
two shear$; andH,.

M = SRH, H, (5.51)

Every 3D affine transformation, then, can be viewed as this sequence of elementdignspdodowed by a
translation. In Case Study 5.??? we explore the mathematics behindrthiarid see how an actual
decomposition might be carried out.

Useful Classes of Transformations.

It's useful to categorize affine transformations, according td thesy “do” or “don’t do” to certain properties of
an object when it is transformed. We know they always preserve parallelismesfadn object, but which
transformations also preserve the length of each edge, and which onegplesangles between each pair of
edges?

1). Rigid Body Motions.

It is intuitively clear that translating an object, or rotating it, wilt change its shape or size. In addition,
reflecting it about a plane has no effect on its shape or size. Sincafieeisimot affected by any one of these
transformations alone, it is also not affected by an arbitrary csitigpoof them. We denote by

Tiga = {rotations, reflections, translations}

the collection of all affine transformations that consist of any sequémotatons, reflections, and translations.
These are known classically as tiggd body motions, since an object is moved rigidly from one position and
orientation to another. Such transformations latleogonalmatrices in homogeneous coordinates. These are
matrices for which the inverse is the same as the transpose:

|\7i-1:|\7|'T

2). Angle-Preserving Transformations.

A uniform scaling (having equal scale fact&s S, = S,) expands or shrinks an object, but does so uniformly,
so there is no change in the object’s shape. Thus the angle betweew adges is unaffected. We can denote
such a class as

17Goldman [gold90] reports the same form Kbrand gives compact results for several other complex transformations.

Chap 5. Transformations 9/28/99 page 67



Tange = {rotations, reflections, translations, uniform scalings}

This class is larger than the rigid body motions, because it inclndesnu scaling. It is an important class
because, as we see in Chapter ???, lighting and shading calculationsaetiendot products between various
vectors. If a certain transformation does not alter angles then it doesenadipalproducts, and lighting
calculations can take place in either the transformed or the untransfepan

(Estimate of time required: three hours.) Given a 3D affiaesformation |, d} we wish to see how it is
composed of a sequence of elementary transformations. Foll@uilggnan [GEMS Ill, p. 108] we develop the
steps required to decompose the 3 by 3 midristo the product of a scalirfg a rotationR, and two sheard;
andH,:

M =SRH,; H, (5.52)

You are asked to verify each step along the way, and to developreeriiat will produce the individual
matricesSR , H; andH..

Suppose the matrid has roway, v, andw, each a 3D vector:
e
M=gvz
ewg
Goldman’s approach is based on the classical Gram-Schmidgortalization procedure, whereby the rows of
M are combined in such a way that they become mutually orthogonal and lehgitti. The matrix composed of

these rows is therefore orthogonal (see Practice Exercise 9.9.14) andkserrepa rotation (or a rotation with a
reflection). Goldman shows that the orthogonalization process istitwlashears. The rest is detail.

The steps are as follows. Carefully follow each step, and do eachtaksegiven in brackets.

1. Normalizeu tou* = u/S; , whereS, = .

2. Subtract a piece af from v so that what is left is orthogonalut: Call b =v - du* whered = v-u*. [Show
thatb-u* = 0.]

3. Normalizeb: setv* = b/S,, whereS; = p|.

4. Set up some intermediate values= w-u* andn = w-v*, €=+ m?+n’, andr = (mu* + nv*)/e.

5. Subtract a piece offrom w so that what is left is orthogonal to bathandv*: Call c=w - er. [Show that
cur=cv*=0]

5. Normalizec: setw* = ¢/S; whereS; = [].

7. The matrix

al*y
R:gv*i

ew* g
is trk:eref(;re orthogonal, and so represents a rotation. (QGertpuleterminant: if it is -1 then simply replace
with -w*.

d .
8. Define the shear matril, = | + g(v* A U*) (see Practice exercise 9.9.1), where
(v* Au*) =(v*) "u* is the outer product of v* and u*.

e .. ..
9. Define the shear matrikl, = | +§ (W* Ar), where(w* Ar) =(w*)'r.

10. [Show that*H; = u*, v*H; =Vv* + du*/ S, = VIS, andw* H; =w*. First show the property of the outer
product that for any vectoes b, andc: a(bA ¢) = (a>o)c. Then use this property, along with the

orthogonality ofu*, v* andw*, to show the three relations.]
11. [Show that*H, = u*, v*H, =v*, W*H, =w* + er/ S =w/S;.

Chap 5. Transformations 9/28/99 page 68



12. [Put these together to show tNat SRHH,.] Sis defined to be

& 0 06
S:go S 0z
e0 0 So

Note that the decomposition is not unique, since the veatersandw could be orthogonalized in a different
order. For instance, we could first fomt asw/|w|, then subtract a piece wfrom w* to make a vector
orthogonal tav*, then subtract a vector fromto make a vector orthogonal to the other two.

Write the routine:
void decompose(DBL m[3][3],DBL S[3][3],DBL R[3][3],DBL H1[3][3],DBL
H2[3][3])

whereDBL is defined aslouble , that takes matrix m and computes the matrices S, R, H1 and H2 as described
above. Test your routine on several matrices.

Other ways to decompose a 3D transformation have been fouredl aSee for instance [thomas, GEMS II, p.
320] and [Shoemake, GEMS IV p. 207].

Case Study 5.7. Drawing 3D scenes described by SDL.

(Level of Effort:Il) Develop a complete application that uses3bene , Shape, Affine4 , etc. classes and
supports reading in and drawing the scene described in an SDLdfiéssist you, use any classes provided on
the book’s web site. Flesh out atmawOpenGL () methods that are needed. Develop a scene file that contains
descriptions of the jack, a wooden chair, and several walls.

5.9. For Further Reading
There are some excellent books on transformations that suppléredreatment here. George Martin’s
TRANSFORMATION GEOMETRY [martin82] is superb, as is Yaglom's GEOMETRIC
TRANSFORMATIONS [yaglom62]. Hogar also provides a fine chapter ororeend transformations
[hoggar92]. Several of Blinn’s engaging articles in JIM BLINN'SRNER - A TRIP DOWN THE GRAPHICS
PIPELINE [blinn96] provide excellent discussions of homogeneous catedi and transformations in computer
graphics.

Chap 5. Transformations 9/28/99 page 69



(for ECE660, Fall, 1999... F.S.Hill,Jr.)

CHAP 6. Modeling Shapes with Polygonal Meshes

Try to learn something about everything and everything about something.
T.H. Huxley

Goals of the Chapter

To develop tools for working with objects in 3D space
To represent solid objects using polygonal meshes
To draw simple wireframe views of mesh objects

Preview

Section 6.1 gives an overview of the 3D modeling process. Section 6.2 describes polygonal mestms that al
you to capture the shape of complex 3D objects in simple data structures. Thagea@bperich meshes are
reviewed, and algorithms are presented for viewing them.

Section 6.3 describes families of interesting 3D shapes, such as the Platonic solids, the Buckyball, geodesic
domes, and prisms. Section 6.4 examines the family of extruded or “swept” shapes, and shimag dete
3D letters for flying logos, tubes and “snakes” that undulate through space, and surfaces of revolution.

Section 6.5 discusses building meshes to model solids that have smoothly cuaeessiihe meshes ap-

proximate some smooth “underlying” surface. A key ingredient is the computation of the normal vector to the
underlying surface at any point. Several interesting families of smooth solids are discussed, including quadric
and superquadric surfaces, ruled surfaces and Coons patches, explicit functions of two variables, and surfaces
of revolution.

The Case Studies at the end of the chapter explore many ideas further, and request thatopapfdical-
tions to test things out. Some cases studies are theoretical in nature, such as derivinglttierieleefor
computing a normal vector, and examining the algebraic form for quadric surfaces. Others aractios, pr
such as reading mesh data from a file and creating beautiful 3D shapes such as tubes and arches.

6.1 Introduction.

In this chapter we examine ways to describe 3D objects psiggonal meshe$olygonal meshes are simply
collections of polygons, or “faces”, which together form the “skin” of the object. They have become a standard
way of representing a broad class of solid shapes in graphics. We have seen severasesachpas the

cube, icosahedron, as well as approximations of smooth shapes like the sphere, eylthdene (see Figure

5.65). In this chapter we shall see many more examples. Their prominence in graphics stems from the simplic-
ity of using polygons. Polygons are easy to represent (by a sequence of vertices) and transformpleave si
properties (a single normal vector, a well-defined inside and outside, etc.), and aredeasy(tesing a poly-

gon-fill routine, or by mapping texture onto the polygon).

Many rendering systems, including OpenGL, are based on drawing objects by drawing a sequence of polygons.
Each polygonal face is sent through the graphics pipeline (recall Figure 5.56), where its vertices undergo vari-
ous transformations, until finally the portion of the face that survives clipping is colored ilhadet', and

shown on the display device.

We want to see how to design complicated 3D shapes by defining an appropriate set of facebje8tsne o

can be perfectly represented by a polygonal mesh, whereas others can only be approximbged. dftieég-

ure 6.1a, for example, naturally has flat faces, and in a rendering the edges between faces should be visible.
But the cylinder in Figure 6.1b is supposed to have a smoothly rounded wall. This roundness cannot be
achieved using only polygons: the individual flat faces are quite visible, as are the edges between them. There
are, however, rendering techniques that make a mesh likepiesrto be smooth, as in Figure 6.1c. We ex-

amine the details of so-called Gouraud shading in Chapter 8.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 1



Figure 6.1. Various shapes modeled by meshes.

We begin by describing polygonal meshes in some generality, and seeing how to define and manipulate them
in a program (with or without OpenGL). We apply these ideas to modeling polyhedra, whicmtiyheage

flat faces, and study a number of interesting families of polyhedra. We then tackle the problem of using a
mesh to approximate a smoothly curved shape, and develop the necessary tools to create aatersaaipul
models.

6.2. Introduction to Solid Modeling with Polygonal Meshes.

| never forget a face, but in your case I'll make an exception.
Grouch Marx

We shall use meshes to model both solid shapes and thin “skins”. The object is considesadidadf ke

polygonal faces fit together to enclose space. In other cases the faces fit together without enclosing space, and
so they represent an infinitesimally thick surface. In both cases we call the collection of polpgbmoaal

mesh(or simplymesh.

A polygonal mesh is given by a list of polygons, along with information about the direction in which each
polygon is “facing”. This directional information is often simply th@mal vector to the plane of the face,

and it is used in the shading process to determine how much light from a light source is scatteredagff the f
Figure 6.2 shows the normal vectors for various faces of the barn. As we examine in ddtagtar C1, one
component of the brightness of a face is assumed to be proportional to the cosine of the angle @mown as
the figure for the side wall of the barn) between the normal vector to a face and the vector to thertight sou
Thus the orientation of a surface with respect to light sources plays an important part in draviiray.

Figure 6.2. The normal direction to a face determines its brightness.

Vertex normals versus face normals.

It turns out to be highly advantageous to associate a “normal vector” to each vertex of a facehamaites

vector to an entire face. As we shall see, this facilitates the clipping process as well as the shading process for
smoothly curved shapes. For flat surfaces such as the wall of a barn, this means that eachticEf\é, ey

V,, andV, that define the side wall of the barn will be associated witlsaheenormaln,, the normal vector to

the side wall itself (see Figure 6.3a). But vertices of the front wall, sueh adl use normah,. (Note that

verticesV, andV, are located at the same point in space, but use different normals.)

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 2



Figure 6.3. Associating a “normal” with each vertex of each face.

For a smoothly curved surface such as the cylinder in Figure 6.3b, a differevdcpjs used in order to per-

mit shading that makes the surface appear smooth. Both ¥eréfaceF, and vertex/, on faceF, use the

same normah, which is the vector perpendicular to the underlying smooth surface. We see how to compute
this vector conveniently in Section 6.2.2.

6.2.1. Defining a polygonal mesh.
A polygonal mesh is a collection of polygons along with a normal vector associated with each vertex of each
polygon. We begin with an example.

Example 6.2.1. The “basic barn”.Figure 6.4 shows a simple shape we call the “basic barn”. It has seven po-
lygonal faces and a total of 10 vertices (each of which is shared by three faces). For convenience it has a
square floor one unit on a side. (The barn would be scaled and orientedriapgiropefore being placed in a
scene.) Because the barn is assumed to have flat walls there are only seven distinct normal vectors involved,
the normal to each face as shown.

Figure 6.4. Introducing the basic barn.

There are various ways to store mesh information in a file or program. For the barn you couldtusfe a li

seven polygons, and list for each one where its vertices are located and where the normal for each of its verti-
ces is pointing (a total of 30 vertices and 30 normals). But this would be quite redundant and bulky, since there
are only 10 distinct vertices and seven distinct normals.

A more efficient approach uses three separate listsrtax list, normal list, andface list The vertex list re-

ports the locations of the distinct vertices in the mesh. The list of normals reports the directions ththe dis
normal vectors that occur in the model. The face list simply indexes into these lists. As we see next, the barn is
thereby captured with 10 vertices, seven normals, and a list of seven simple face descriptors.

The three lists work together: The vertex list contains locatiorgeé@metricinformation, the normal list
containsorientation information, and the face list contains connectivityomological information.

The vertex list for the barn is shown in Figure 6.5. The list of the seven distinct nasrslatsuin in Figure

6.6. The vertices have indices 0 through 9 and the normals have indices 0 through 6. The vectors shown have
already been normalized, since most shading algorithms require unit vectors. (Recall that a cosine can be
found as the dot product between two unit vectors).

vertex || x y z

0 0 0 0

1 1 0 0

2 1 1 0

3 0.5 |15 |O

4 0 1 0

5 0 0 1

6 1 0 1

7 1 1 1

8 05 |15 |1

9 0 1 1

Figure 6.5. Vertex list for the basic barn.
normal | n, n, |n
0 [[-1 0 0

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 3



1 -0.477 |0.8944 |0

2 0.447 0.8944 |0

3 1 0 0

4 0 -1 0

5 0 0 1

6 0 0 -1

Figure 6.6. The list of distinct normal vectors involved.
face vertices |associated normal
0 (left) 0,5,9,4 0,0,0,0

1 (roof left) 3,4,9,8 1,111

2 (roof right) 2,3,8,7 2,2,2,2

3 (right) 12,76 |3,3,3,3

4 (bottom) 0,16,5 (4,444

5 (front) 5,6,7,8,9 |5,5,5,5,5

6 (back) 0,4,3,2,1 |6,6,6,6,6

Figure 6.7. Face list for the basic barn.

Figure 6.7 shows the barn’s face list: each face has a list of vertices and the normal vector associated with each
vertex. To save space, just the indices of the proper vertices and normals are used. (Sincaeadh ftatrf

all of the vertices in a face are associated with the same normal.) The list of vertices for each face begins with
any vertex in the face, and then proceeds around the face vertex by vertex until a complete circuit has been
made. There are two ways to traverse a polygon: clockwise and counterclockwise. For instance, face #5 above
could be listed as (5,6,7,8,9) or (9,8,7,6,5). Either direction could be used, but weaabdmvention that

proves handy in practice:

* Traverse the polygon counterclockwise as seen from outside the object

Using this order, if you traverse around the face by walking on the outside surface from vertex to vertex, the
interior of the face is on your left. We later design algorithms that exploit this ordering. Because of it the algo-
rithms are able to distinguish with ease the “front” from the “back” of a face.

The barn is an example of a “data intensive” model, where the position of each vertex is entered (maybe by
hand) by the designer. In contrast, we see later some models that are generated alglbyrithimie it isn't

too hard to come up with the vertices for the basic barn: the designer chooses a simglexteios the

floor, decides to put one corner of the barn at the origin, and chooses a roof height of 1.5 units. By suitable
scaling these dimension can be altered later (although the relative height of ttethalbarn’s peak, 1: 1.5,

is forever fixed).

6.2.2. Finding the normal vectors.

It may be possible to set vertex positions by hand, but it is not so easy to calculate the normalveetors
eral each face will have three or more vertices, and a designer would find it challenging to jotedoamtl
vector. It's best to let the computer do it during the creation of the mesh model.

If the face is considered flat, as in the case of the barn, we need only find the normal vector to the face itself,
and associate it with each of the face’s vertices. One direct way uses the vector cross product to find the nor-
mal, as in Figure 4.16. Take any three adjacent points on the fadg, ¥nd \,, and compute the normal as

their cross produah = (V, - V,)X(V, - V,). This vector can now be normalized to unit length.

There are two problems with this simple approach. a). If the two vecterg \and \, - V, are nearly parallel

the cross product will be very small (why?), and numerical inaccuracies may result. b). As we see later, it may
turn out that the polygon is not perfectly planar, i.e. that all of the vertices do not lie in the aaeeélpls

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 4



the surface represented by the vertices cannot be truly flat. We need to form some “average” value for the
normal to the polygon, one that takes into consideration all of the vertices.

A robust method that solves both of these problems was devised by Martin Newell [newm#8putethe
components gpm,, m, of the normam according to the formula:

N-1
M= A (Y~ Yoei))(Z T Ziexgy)
i=0
-1
my a (Z| Z1ext(|))(xl Xnex(l)) (6'1)
1
m a (Xl Xnext(|))(y| ynex(i))

i=0

whereN is the number of vertices in the face, ¥, z) is the position of théth vertex, and whereex{(j) =

(j+1) modN is the index of the “next” vertex around the face after vgrtexorder to take care of the “wrap-
around” from thel{-1)-st to the 0-th vertex. The computation requires only one multiplication per edge for
each of the components of the normal, and no testing for collinearity is needed. This result is developed in
Case Study 6.2, and C++ code is presented for it.

The vectorm computed by the Newell method could point toward the inside or toward the outside of the poly-
gon. We also show in the Case study that if the vertices of the polygon are traversedréases) in a CCW
direction as seen from outside the polygon, timepoints toward the outside of the face.

Example 6.2.2:Consider the polygon with vertices = (6, 1, 4),P, = (7, 0, 9), an®® = (1, 1, 2). Find the

normal to this polygon using the Newell meth8dlution: Direct use of the cross product gives ((7, 0, 9) - (6,
1,4) ((14,1,2)-(6,1,4)=(2, -23, -5). Application of the Newell method yields the same result: (2, -23,
-5).

Practice Exercises.

6.2.1. Using the Newell Method.

For the three vertices (6, 1, 4), (2, 0, 5), and (7, 0, 9), compare the normal found using the Niaaell me

with that found using the usual cross product. Then use the Newell method taxfiygng) for the polygon

having the vertices (1, 1, 2), (2, 0, 5), (5, 1, 4), (6, 0, 7). Is the polygon planar? If so, find its true normal using
the cross product, and compare it with the result of the Newell method.

6.2.2. What about a non-planar polygonTonsider the quadrilateral shown in Figure 6.8 that has the vertices
(0,0, 0),(1,0,0),(0,0,1), and @,1). Whena is nonzero this is a non-planar polygon. Find the “normal” to

it using the Newell method, and discuss how good an estimate it is for different vadues of

Figure 6.8. A non-planar polygon.

6.2.3. Represent the “generic cube’Make vertex, normal, and face lists for the “generic cube”, which is
centered at the origin, has its edges aligned with the coordinate axes, and has edges of lertgib tiso. T

eight vertices lie at the eight possible combinations of ‘+' and ‘-ih (1, £1).

6.2.4. Faces with holegzigure 6.9 shows how a face containing a hole can be captured in a face list. A pair of
imaginary edges are added that bridge the gap between the circumference of the face and thedile, as s
gested in the figure.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 5



4 K
Figure 6.9. A face containing a hole.

The face is traversed so that (when walking along the outside surface) the interior of the face lies to the left.
Thus a hole is traversed in the CW direction. Assuming we are looking at the face in the figure from its out-
side, the list of vertices would be: 54 38 9 6 7 8 3 2 1. Sketch this face with an additional hole igiite and
the proper list of vertices for the face. What normals would be associated with each vertex?

6.2.3. Properties of Meshes.
Given a mesh consisting of a vertex, normal, and face lists, we might wonder what kind of an object it repre-
sents. Some properties of interest are:

« Solidity: As mentioned above a mesh represents a solid object if its faces together enclose a positive and
finite amount of space.

» ConnectednessA mesh isconnectedif every face shares at least one edge with some other face. (If a mesh
is not connected it is usually considered to represent more than one object.)

« Simplicity: A mesh issimple if the object it represents is solid and has no holes through it; it can be de-
formed into a sphere without tearing. (Note that the term “simple” is being useth logriee a different sense
from for a “simple” polygon.).

* Planarity : A mesh is planar if every face ipkanar polygon: The vertices of each face then lie in a single
plane. Some graphics algorithms work much more efficiently if a face is planar. Triangles are inh&rently p
nar, and some modeling software takes advantage of this by using only triangles. Queddritai¢he other
hand, may or may not be planar. The quadrilateral in Figure 6.8, for instance, is pladaonfyaifa = 0.

 Convexity: The mesh representanvexobject if the line connecting any two points within the object lies
wholly inside the object. convexity was first discussed in section 2.3.6 in connection with polyigars. F

6.10 shows some convex and some non-convex objects. For each non-convex object an example line is shown

whose endpoints lie in the object but which is not itself contained within the object.

Figure 6.10. Examples of convex and nonconvex 3D objects.

The basic barn happens to possess all of these properties (check this). For a givemmeshhese proper-
ties are easy to determine in a program, in the sense that a simple algorithm exists that does the job. (We dis-
cuss some below.) Other properties, such as solidity, are quite difficult to establish.

The polygonal meshes we choose to use to model objects in graphics may have some or all of these properties
the choice depends on how one is going to use the mesh. If the mesh is supposed to represent a physical object

made of some material, perhaps to determine its mass or center of gravity, we may insist that it be at least

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 6



connected and solid. If we just want to draw the object, however, much greater freedom is available, sinc
many objects can still be drawn, even if they are “non-physical”.

Figure 6.11 shows some examples of objects we might wish to represent by meshes. PYRAMIDLp wfa
triangular faces which are necessarily planar. It is not only convex, in fact it has all of the properties above.

PYRAMID

IMPOSSIBLE

Figure 6.11. Examples of solids to be described by meshes.

DONUT is connected and solid, but it is neither simple (there is a hole through it) nor convex. Twacasts
themselves have holes. Whether or not its faces are planar polygons cannot be determined from a figure alone.
Later we give an algorithm for determining planarity from the face and vertex lists.

IMPOSSIBLE cannot exist in space. Can it really be represented by a mesh?

BARN seems to be made up of two parts, but it could be contained in a single mesh. Whether it iscconnect
would then depend on how the faces were defined at the juncture between the silo and thddimgn b

BARN also illustrates a situation often encountered in graphics. Some faces have been added to the mesh that
represent windows and doors, to provide “texture” to the object. For instancelelad gie barn is a rectan-

gle with no holes in it, but two squares have been added to the mesh to represent wihdsevsqliares are

made to lie in the same plane as the side of the barn. This then is not a connected mesh, but it can still be dis-
played on a graphics device.

6.2.4. Mesh models for non-solid objects.

Figure 6.12 shows examples of other objects that can be characterized by polygonal meshe® 3iese a
faces, and are best thought of as infinitesimally thick “shells.”

a). b). C).
BOX

STRUCT FACEH

(use b), ¢) from old Fig. 15.3)

Figure 6.12. Some surfaces describable by meshes. (Part c is courtesy of the Univdtalty) o
BOX is an open box whose lid has been raised. In a graphics context we might want to color the outside of

BOX's six faces blue and their insides green. (What is obtained if we remove onm@faddyRAMID
above?)

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 7



Two complex surfaces, STRUCT and FACE, are also shown. For these examples the polygonal faces are being
used to approximate a smooth underlying surface. In some situations the mesh may be all that is available for
the object, perhaps from digitizing points on a person's face. If each face of the mesh is dravenied a s

polygon, the picture will look artificial, as seen in FACE. Later we shall examine tools that attempt to draw

the smooth underlying surface based only on the mesh model.

Many geometric modeling software packages construct a model from some object - a salidaarea $hat

tries to capture the true shape of the object in a polygonal mesh. The problem of composing thebksts ca
difficult. As an example, consider creating an algorithm that generates vertex and face lists to approximate the
shape of an engine block, a prosthetic limb, or a building. This area in fact is a subject of much ongoing re-
search [Mant88], [Mort85]. By using a sufficient number of faces, a mesh can approximate the “underlying
surface” to any degree of accuracy desired. This propedgmpletenessnakes polygon meshes a versatile

tool for modeling.

6.2.5. Working with Meshes in a Program.
We want an efficient way to capture a mesh in a program that makes it easy to create and draw the object.
Since mesh data is frequently stored in a file, we also need simple ways to read and write “mesh files”.

It is natural to define a clasgesh and to imbue it with the desired functionality. Figure 6.13 shows the decla-
ration of the clasMesh, along with those of two simple helper classéstexlD andFacel. A Mesh ob-

ject has a vertex list, a normal list, and a face list, represented simply bymrraygsm, andface , respec-
tively. These arrays are allocated dynamically at runtime, when it is known how large they must be. Their
lengths are stored imumVerts , numNormals , andnumFaces, respectively. Additional data fields can be
added later that describe various physical properties of the object such as weight and typaaf mat

[[H#HHHHHHH R Vertex|D tHftHHHHHHHAHHEHHEH ]
class VertexID{
public:
int vertindex; // index of this vert in the vertex list
int normindex; // index of this vertex's normal

9

[[HHHHHHHHHRRAHHHHHHHT Face fHHHHHHHHH T

class Face{

public:

int nVerts; // number of vertices in this face
VertexID * vert; // the list of vertex and normal indices
Face(){nVerts = 0; vert = NULL;} // constructor
~Face(){delete[] vert; nVerts = 0;} // destructor

B MeSsh
class Mesh{
private:
int numVerts; /[l number of vertices in the mesh
Point3* pt; /I array of 3D vertices
int numNormals; // number of normal vectors for the mesh
Vector3 *norm; // array of normals

int numFaces; /[ number of faces in the mesh
Face* face; /[ array of face data
/I ... others to be added later
public:
Mesh(); I constructor
~Mesh(); /I destructor
int readFile(char * fileName); // to read in a filed mesh
.. others ..

3

Figure 6.13. Proposed data type for a mesh.

1 Definitions of the basic classBeint3 andVertex3 have been given previously, and also appear in Ap-
pendix 3.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 8



TheFace data type is basically a list of vertices and the normal vector associated with each vertex in the face.
It is organized here as an array of index pairsvttie vertex in thd -th face has positiopt[face[f].

vert[v].vertindex] and normal vectanorm[face[f].vert[v].normindex] . This appears
cumbersome at first exposure, but the indexing scheme is quite orderly and easy to manabasahe ad-

vantage of efficiency, allowing rapid “random access” indexing intethe array.

Example 6.2.3. Data for the tetrahedronFigure 6.14 shows the specific data structure for the tetrahedron
shown, which has vertices at (0,0,0), (1,0,0), (0,1,0), and (0,0,1). Check the ealorésd in each field. (We
discuss how to find the normal vectors later.)

Figure 6.14. Data for the tetrahedron.

The first task is to develop a method for drawing such a mesh object. It's a matter of drawing each of its faces,
of course. An OpenGL-based implementation ofNtesh::draw () method must traverse the array of faces in

the mesh object, and for each face send the list of vertices and their normals down the graphics pipeline. In
OpenGL you specify that subsequent vertices are associated with normahvést@xecutingglNor-

mal3f(m.x, m.y, m.z) 2. So the basic flow dflesh::draw () is:

for( each face, f, in the mésh

glBegin(GL_POLYGON);
for( each vertex, v, in face), f

{
gINormal3f( normal at vertex iy
glVertex3f( position of vertex)y
glEnd();

The implementation is shown in Figure 6.15.

void Mesh:: draw() // use OpenGL to draw this mesh
for(int f = O; f < numFaces; f++) // draw each face

glBegin(GL_POLYGON);
for(int v = 0; v < face[f].nVerts; v++) // for each one..

int in = face[f].vert[v].normIndex ; // index of this normal
intiv = face[f]l.vert[v].vertindex ; // index of this vertex
gINormal3f(norm[in].x, norm[in].y, norm[in].z);
glVertex3f(pt[iv].x, ptfiv].y, ptliv].z);

}
glEnd();

}

Figure 6.15. Method to draw a mesh using OpenGL.

We also need methods to create a particular mesh, and to read a predegiméatormemory from a file. We
consider reading from and writing to files in Case Study 6.1. We next examine a number sffingtéaeni-
lies of shapes that can be stored in a mesh, and see how to create them.

2 For proper shading these vectors must be normalized. Otherwiseytiaeble (GL NORMALIZE in the
init () function. This requests that OpenGL automatically normalize all normal vectors.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 9



Creating and drawing a Mesh object using SDL.

It is convenient in a graphics application to read in mesh descriptions using the SDL language thtroduce
Chapter 5. To make this possible simply deriveMesh class fromShape, and add the methaita-
wOpenGL(). Thus Figure 6.13 becomes:

class Mesh : public Shape {
/lsame as in Figure 6.13
virtual void drawOpenGL

tellMaterialsGL(); glPushMatrix(); // load properties into the object
glMultMatrixf(transf.m); draw(); // draw the mesh
glPopMatrix();

}; llend of Mesh class

TheScene class that reads SDL files is already set to accept the keymesid, followed by the name of the
file that contains the mesh description. Thus to create and draw a pawn with a certain translation and scaling,
use:

push translate 3 5 4 scale 3 3 3 mesh pawn.3vn pop

6.3. Polyhedra.

It is frequently convenient to restrict the data in a mesh so that it reprepatybedron. A very large num-
ber of solid objects of interest are indeed polyhedra, and algorithms for processing a mesreatiybsm-
plified if they need only process meshes that represent a polyhedron.

Slightly different definitions for a polyhedron are used in different contexts, [Coxeter69, Courant & Rob-
bins??, F&VD90,] but we use the following:

Definition
A polyhedron is a connected mesh of simple planar polygons that encloses a finite amount of space.

So by definition a polyhedron represents a single solid object. This requires that:

« every edge is shared by exactly two faces;

« at least three edges meet at each vertex:

« faces do not interpenetrate: Two faces either do not touch at all, or they touch
only along their common edge.

In Figure 6.11 PYRAMID is clearly a polyhedron. DONUT evidently endagce, so it is a polyhedron if

its faces are in fact planar. It is not a simple polyhedron, since there is a hole through it. In addition, two of its
faces themselves have holes. Is IMPOSSIBLE a polyhedron? Why? If the texture faces areB#&RiNed

might be modeled as two polyhedra, one for the main part and one for the silo.

Euler’s formula:

Euler’s formula (which is very easy to prove; see for instance [courant and robbins, 61, p. 236]) provides a
fundamental relationship between the number of faces, edges, and vértiEear(dV respectively) of a sim-

ple polyhedron:

V+F-E= 2 (6.1)

For example, a cube h&s= 8,F = 6, andE = 12.

A generalization of this formula is available if the polyhedron is not simple [F&VD p. 544]:

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 10



V+F-E= 2+H-2G (6.2)

whereH is the total number of holes occurring in faces, @ns the number of holes through the polyhedron.
Figure 6.16a shows a “donut” constructed with a hole in the shape of another parallelepiped. The tmwo ends a
beveled off as shown. For this obj&tct 16,F = 16,E = 32, H = 0, andG = 1. Figure 6.16b shows a polyhe-

dron having a hol@ penetrating part way into it, and hdepassing through it.

a). b). I
ot
Iz '
A B

Figure 6.16. Polyhedron with holes.
HereV = 24,F = 15,E = 36,H = 3, andG = 1. These values satisfy the formula above in both cases.

The “structure” of a polyhedron is often nicely revealed I8chlegel diagram This is based on a view of the
polyhedron from a point just outside the center of one of its faces, as suggested in Figure 6.17a. Viewing a
cube in this way produces the Schlegel diagram shown in Figure 6.17b. The front face appears as a large poly-
gon surrounding the rest of the faces.

a). b).

I

Figure 6.17. The Schlegel diagrams for a cube.

Figure 6.18 shows further examples. Part a) shows the Schlegel diagram of PYRAMID shayunar6A 1,
and parts b) and c¢) show two quite different Schlegel diagrams for the basi¢Which faces are closest to
the eye?).

a). b). c).

[

-

Figure 6.18. Schlegel diagrams for PYRAMID and the basic barn.

6.3.1. Prisms and Antiprisms.

A prism is a particular type of polyhedron that embodies certain symmetries, and thergiite $gmple to
describe. As shown in Figure 6.19 a prism is definegvimeping(or extruding) a polygon along a straight
line, turning a 2D polygon into a 3D polyhedron. In Figure 6.19a polfjerswept along vecta to form
the polyhedron shown in part b. Wheiis perpendicular to the plane Bfthe prism is aight prism . Figure
6.19c shows some block letters of the alphabet swept to form prisms.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 11



- P G

Figure 6.19. Forming a prism.

A regular prism has a regular polygon for its base, and squares for its side faces. A hexagonal version is
shown in Figure 6.20a. A variation is taetiprism, shown in Figure 6.20b. This is not an extruded object.

Instead the top-gon is rotated through 18G/degrees and connected to the bottegon to form faces that

are equilateral triangles. (How many triangular faces are there?) The regular prism and antiprism are examples
of “semi-regular” polyhedra, which we examine further later.

a). n-gon b). n-gorf

equilateral
triangle

Figure 6.20. A regular prism and antiprism.

square

Practice Exercises

6.3.1. Build the lists for a prism.
Give the vertex, normal, and face lists for the prism shown in Figure 6.21. Assume théthaggriem (face
#4) lies in thexyplane, and vertex 2 lies on thexis atz = 4. Further assume vertex 5 lies 3 units alongthe
axis, and that the base is an equilateral triangle.

#1 (top 2

y/\#z (back]

#5 (right)

#3 (front)—_| g

<

#4 (bottom
Figure 6.21. An example polyhedral object.
6.3.2. The unit cube.Build vertex, normal, and face lists for theit cube: the cube centered at the origin
with its edges aligned with the coordinate axes. Each edge has length 2.
6.3.3. An Antiprism. Build vertex, normal, and face lists for an anti-prism having a square as its top polygon.
6.3.4. Is This Mesh Connected the mesh defined by the list of faces: (4, 1, 3), (4, 7, 2, 1), (2, 7, 5), (3, 4,
8, 7, 9) connected? Try to sketch the object, choosing arbitrary positions for the nine vertices. What algorithm
might be used to test a face list for connectedness?
6.3.5. Build MeshesFor the DONUT, IMPOSSIBLE, and BARN objects in Figure 6.11, assign humbers to
each vertex and then write a face list.
6.3.6. Schlegel diagramsDraw Schlegel diagrams for the prisms of Figure 6.20 and Figure 6.21.

4

6.3.2. The Platonic Solids.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 12



If all of the faces of a polyhedron are identical and each is a regular polygon, the objegLisapolyhe-
dron. These symmetry constraints are so severe that only five such objects can eRlatpttie solids’

shown in Figure 6.22 [Coxe61]. The Platonic solids exhibit a sublime symmetry and a fascimatirgg ar
properties. They make interesting objects of study in computer graphics, and often appé@hmodeling

CAD applications.
a). Tetrahedron b). Hexahedron (cube) ¢). Octahedrg

>

d). lcosahedron e). Dodecahedron

Figure 6.22. The five Platonic solids.

Three of the Platonic solids have equilateral triangles as faces, one has squares, and the dodecahedron has
pentagons. The cube is a regular prism, and the octahedron is an antiprism (why?). Bhef ValieandE

for each solid are shown in Figure 6.23. Also shown is the Sénsiftibol p,q) for each solid. It states that

each face is p-gon and thag of them meet at each vertex.

solid V F E Schlafli
Tetrahedron 4 4 6 @ 3
Hexahedron 8 6 12 4, 3)
Octahedron 6 8 12 (3, 4)
|cosahedron 12 20 30 (3,5
Dodecahedron 20 12 30 (5, 3)

Figure 6.23. Descriptors for the Platonic solids.

It is straightforward to build mesh lists for the cube and octahedron (see the exeféesgs)e example ver-
tex and face lists for the tetrahedron and icosahedron below, and we discuss how to commauitéste We

also show how to derive the lists for the dodecahedron from those of the icosahedrog,usakiftheir du-
ality which we define next.

* Dual polyhedra.

Each of the Platonic soliddhas adual polyhedronD. The vertices oD are thecentersof the faces oP, so
edges oD connect the midpoints of adjacent face®oFigure 6.24 shows the dual of each Platonic solid
inscribed within it.

old A8.2 showing duals.

Figure 6.24. Dual Platonic solids.

» The dual of a tetrahedron is also a tetrahedron.
* The cube and octahedron are duals.

3Named in honor of Plato (427-347 bc) who commemorated them Trirhaeus But they were known before
this: a toy dodecahedron was found near Padua in Etruscan ruins dating from 500 BC.

4 Named for L. Schlafli, (1814-1895), a Swiss Mathematician.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 13



» The icosahedron and dodecahedron are duals.

Duals have the same numbEr,of edges, an¥f for one isF for the other. In addition, if( g) is the Schlafli
symbol for one, then it igy( p) for the other.

If we know the vertex list of one Platonic soRgdwe can immediately build the vertex list of its dDalsince
vertexk of D lies at the center of fadeof P. Building D in this way actually builds a version that inscriBes

To keep track of vertex and face numbering we us®del, which is fashioned by slicing along certain edges
of each solid and “unfolding” it to lie flat, so that all the faces are seen from the outside. Modelsegafthr
the Platonic solids are shown in Figure 6.25.

a). Tetrahedron b). Cube 5 6
2 3 5 6
7 3 2 6 7
3 2 4 1
1 4
8 4 1 5 8
5
2
8 5

Figure 6.25. Models for the tetrahedron, cube, and octahedron.

Consider the dual pair of the cube and octahedron. Face 4 of the cube is seen to be surrounded by vertices 1, 5,
6, and 2. By duality vertex 4 of the octahedron is surrounded by faces 1, 5, 6, and 2. Note for the tetrahedron
that since it is self-dual, the list of vertices surroundingkttieface is identical to the list of faces surrounding

thek-th vertex.

The position of vertex 4 of the octahedron is the center of face 4 of the cube. Recall from Chapter 5 that the
center of a face is just tleverageof the vertices belonging to that face. So if we know the veriges, Vi,

andV, for face 4 of the cube we have immediately that:
V, =3V V) (6.3)

Practice Exercises

6.3.7.The octahedron.Consider the octahedron that is the dual of the cube described in Exercise 9.4.3. Build
vertex and face lists for this octahedron.

6.3.8. Check duality.Beginning with the face and vertex lists of the octahedron in the previous exercise, find
its dual and check that this dual is (a scaled version of) the cube.

Normal Vectors for the Platonic Solids.

If we wish to build meshes for the Platonic solids we must compute the normal vector to each face. This can
be done in the usual way using Newell's method, but the high degree of symmetry of a Platboitessla

much simpler approach. Assuming the solid is centered at the origin, the normal vector to each face is the
vector from the origin to theenterof the face, which is formed as the average of the vertices. Figure 6.26
shows this for the octahedron. he normal to the face shown is simply:

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 14



Figure 6.26. Using symmetry to find the normal to a face.
m=(V,+V,+V,)/3 (6.4)

(Note also: This vector is also the same as that from the origin to the appropriate vertex on the dual Platoni
solid.)

* The Tetrahedron

The vertex list of a tetrahedron depends of course on how the tetrahedron is positioned, andrdzed. It

is interesting that a tetrahedron can be inscribed in a cube (such that its four vertices lie in ttreensbe,

and its four edges lie in faces of the cube). Consider the unit cube having vertices (+1,£1,£1), and choose the
tetrahedron that has one vertex at (1,1,1). Then it has vertex and face lists given in Figure 6.27 [blinn87].

vertex list face list

vertex X y z face number vertices
0 1 1 1 0 1,2,3
1 1 -1 -1 1 0,3,2
2 1 -1 1 2 0,1,3
3 11 -1 3 0,2,1

Figure 6.27. Vertex List and Face List for a Tetrahedron.

* The Icosahedron

The vertex list for the icosahedron presents more of a challenge, but we can exploit a remarkable fact to make
it simple. Figure 6.28 shows that three mutually perpendigalgen rectanglesnscribe the icosahedron, and

so a vertex list may be read directly from this picture. We choose to align each golden rectangle with a coordi-
nate axis. For convenience, we size the rectangles so their longer edge extendsdrbmlehg its axis. The

shorter edge then extends frot to ¢ , wheret =(+/5 - 1) / 2 = 0.618... is the reciprocal of the golden

ratiof.

old Fig A8.4 golden rectangles in icosahedron.

Figure 6.28. Golden rectangles defining the icosahedron.

From this it is just a matter of listing vertex positions, as shown in Figure 6.29.

vertex X \Y Z
0 0 1 t
1 0 1 -t
2 1 t 0
3 1 -t 0
4 0 -1 -t
5 0 -1t
6 t 0 1
7 -t 0 1
8 t 0 -1
9 -t 0 -1
10 -1 t 0
11 -1 -t 0

Figure 6.29. Vertex List for the Icosahedron.

A model for the icosahedron is shown in Figure 6.30. The face list for the icosahedron candiecgff
of it. (Question: what is the normal vector to face #87?)

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 15



11 11

/&'A
7 9

15 9

AAAAA/
VAVANE

A

Figure 6.30. Model for the |cosahedron.

Some people prefer to adjust the model for the icosahedron slightly into the formigheigure 6.31. This
makes it clearer that an icosahedron is made up of an anti-prism (shown shaded) gentagonal pyramids
on its top and bottom.

5 faces for
pyramidal cap™

10 faces mak
an antiprism

5 faces for
pyramidal ba%

Figure 6.31. An icosahedron is an anti-prism with a cap and base.

* The Dodecahedron

The dodecahedron is dual to the icosahedron, so all the information needed to build lists for the dodecahedron
is buried in the lists for the icosahedron. But it is convenient to see the model of the dodecahedron laid out, as
in Figure 6.32.

19 9 9 8 9
Figure 6.32. Model for the dodecahedron.

Using duality again, we know vertéoof the dodecahedron lies at the center of fackthe icosahedron: just
average the three vertices of fac&ll of the vertices of the dodecahedron are easily calculated in this fash-
ion.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 16



Practice Exercises

6.3.9. Icosahedral Distanced/Vhat is the radial distance of each vertex of the icosahedron above from the
origin?

6.3.10.Vertex list for the dodecahedron.Build the vertex list and normal list for the dodecahedron.

6.3.3. Other interesting Polyhedra.

There are endless varieties of polyhedra (see for instance [Wenn71] and [Coxe63 polytopes]), but sne class i
particularly interesting. Whereas each Platonic solid has the same tyg®offor all of its faces, thar-

chimedian (alsosemiregular) solids have more than one kind of face, although they are still regular poly-
gons. In addition it is required that every vertex is surrounded by the same collection of polygons in the same
order.

For instance, the “truncated cube”, shown in Figure 6.33a, has 8-gons and 3-gons for faces, and around each
vertex one finds one triangle and two 8-gons. This is summarized by associating the symbol 3-8-8 with this

solid.
a). b). c).

7 .
7 </'V\ N
h_ !_<>z'>_/

N/

Figure 6.33. The Truncated Cube.

The truncated cube is formed by “slicing” off each corner of a cube in just the right fashéomaotiel for the
truncated cube, shown in Figure 6.33b, is based on that of the cube. Each edge of the cube is divided into three

parts, the middle part of length = 1/(1+1/7) (Figure 6.33c), and the middle portion of each edge is joined

to its neighbors. Thus if an edge of the cube has endgiatslD, two new vertice¥, andW are formed as
the affine combinations

V=%C+¥‘D
6.5)
ol Ac, LHAL
2 2

Based on this it is straightforward to build vertex and face lists for the truncated cube (seertises and
Case Study 6.3).

Given the constraints that faces must be regular polygons, and that they must occur in the same arrangement
about each vertex, there are only 13 possible Archimedian solids discussed further in Case Study 6.10. Ar-
chimedean solids still enjoy enough symmetry that the normal vector to each face is found using the center of
the face.

One Archimedian solid of particular interest is the truncated icosahed®aM®&n in Figure 6.34, which

consists of regular hexagons and pentagons. The pattern is familiar from soccer balls used around the world.
More recently this shape has been namedtiekyball after Buckminster Fuller because of his interest in
geodesic structures similar to this. Crystallographers have recently discovered that 60 atoms of carbon can be

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 17



arranged at the vertices of the truncated icosahedron, producing a new kind of carbon malesuteitiher
graphite nor diamond. The material has many remarkable properties, such as high-temperature stability and
superconductivity [Brow90 Sci. Amer., also see Arthur hebard, Science Watch 1991], anquirasidhe
nameFullerine.

Figure 6.34. The Bucky Ball.

The Bucky ball is interesting to model and view on a graphics display. To build its vertex andt$ackedvs

the model of the icosahedron given in Figure 6.32 and divide each edge into 3 equal parts. This produces two
new vertices along each edge, whose positions are easily calculated. Number the 60 new vertices according to
taste to build the vertex list of a Bucky ball. Figure 6.35 shows a partial model of the icosahedron math the
vertices connected by edges. Note that each old face of the icosahedron becomes a hexagon, and that each old
vertex of the icosahedron has been “snipped off’ to form a pentagonal face. Building the face list is just a

matter of listing what is seen in the model. Case Study 6.10 explores the Archirsetiés further.

/16

10

2
D

Figure 6.35. Building a Bucky Ball.

» Geodesic Domes.
Few things are harder to put up with than a good example.
Mark Twain

Although Buckminster Fuller was a pioneer along many lines, he is best known for introducing geodesic
domes [fuller73]. They form an interesting class of polyhedra having many useful properties. In paaticular
geodesic dome constructed out of actual materials exhibits extraordinary strength éghts w

There are many forms a geodesic dome can take, and they all approximate a sphere by areatraingem

faces, usually triangular in shape. Once the sphere has been approximated by such faces, the bottom half is
removed, leaving the familiar dome shape. An example is shown in Figure 6.36 based oralteglicos

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 18



Figure 6.36. A geodesic dome.

To determine the faces, each edge of the icosahedron is subdivideB aqad parts, where Fuller calléd
thefrequency of the dome. In the example= 3, so each icosahedral edge is trisected to form 9 smaller trian-
gular faces (see Figure 6.37a).

P1s
a). b). Vi |

Vi / \s 81
\%:}

Figure 6.37. Building new vertices for the dome.

These faces do not lie in the plane of the original faces, however; first the new vertices are “projected out-
ward” onto the surrounding sphere. Figure 6.37b presents a cross sectional view of the projectiarFprocess
example, the edge from to V_is subdivided to produce the two pointg, andW . VertexW _is given by:

Wi, =—V1+§V8 . (6.6)

(What isW_?). ProjectindV._onto the enclosing sphere of radRigs simply a scaling:

Wig
Wi

Ps=R (6.7)

where we writew  for the position vector associated with pdiit. The old and new vertices are connected

by straight lines to produce the nine triangular faces for each face of the icosahedron. (Why isn'’t this a “new
Platonic solid?) What are the values =, andV for this polyhedron? Much more can be found on geodesic
domes in the references, particularly [full75] and [kapp91].

| Practice Exercises.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 19



6.3.11. Lists for the truncated icosahedronWrite the vertex, normal, and face lists for the truncated icosa-
hedron described above.

6.3.12. Lists for a Bucky Ball.Create the vertex, normal, and face lists for a Bucky ball. As computing 60
vertices is tedious, it is perhaps easiest to write a small routine to form each new vertex usingxtistvefr

the icosahedron of Figure 6.29.

6.3.13. Build lists for the geodesic dom&onstruct vertex, normal, and face lists for a frequency 3 geodesic
dome as described above.

6.4. Extruded Shapes

A large class of shapes can be generategibyiding or sweepinga 2D shape through space. The prism

shown in Figure 6.19 is an example of sweeping “linearly”, that is in a straight line. As we shall see, the tetra-
hedron and octahedron of Figure 6.22 are also examples of extruding a shape through space in a certain way.
And surfaces of revolution can also be approximated by “extrusion” of a polygon, once we slightly broaden the
definition of extrusion.

In this section we examine some ways to generate meshes by sweeping polygomstengdeges. In Section
6.5 we develop similar tools for building meshes that attempt to approximate smoothly swept shapes.

6.4.1. Creating Prisms.

We begin with the prism, which is formed by sweeping a polygon in a straight line. Figure 6.38ashiegm
based on a polygon lying in thexy-plane.P is swept through a distanékalong thez-axis, forming the AR-
ROW prism shown in Figure 6.38b. (More generally, the sweep could be along advexgon Figure 6.19.)
As P is swept along, an edge in thdirection is created for each vertexRfThis creates another 7 vertices,
so the prism has 14 vertices in all. They appear in pairs;)if 0) is one of the vertices of the ba&ehen the
prism also contains the vertex,y,H).

a). polygon base: b). P swept in z-direction

c). Model for ARROW prism

#7

#0 #2 #6

Figure 6.38. An example prism.

What face list describes ARROW? The prism is “unfolded” into the model shown in Figure 6.38c to expose its
nine faces as seen from the outside. There are seven rectangular sides plus theabeRand the toap.

Face 2, for instance, is defined by vertices 2, 9, 10, and 3.

Because the prism has flat faces we associate the same normal vector with every vertex of a face: the normal
vector to the face itself.

Building a mesh for the prism.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 20



We want a tool to make a mesh for the prism based on an arbitrary polygon. Suppose the prism's base is a
polygon withN vertices X, yi). We number the vertices of the base 0, .N-1,and those of the cay . . .,

2N -1, so that an edge joins vertigeendi + N, as in the example. The vertex list is then easily constructed to
contain the pointsx(, yj, 0) and &j, yj, H), fori =0, 1, ...N-1.

The face list is also straightforward to construct. We first make the “side” faces or “walls”, and then add the
cap and base. For tl¢h wall ( = 0,...N-1) we create a face with the four vertices having indic¢s- N,

nex{j)+ N, andnex{j) wherenex{j) isj+1 except iff equalsN-1, whereupon it is 0. This takes care of the
“wrap-around” from thel-1)st to the O-th vertexiex{j) is given by:

next() = (+1) moduloN (6.8)

or in terms of program codaext=(j<(N-1)) ?(+1):0 . Each face is inserted in the face

list as it is created. The normal vector to each face is easily found using the Newell method described earlier.
We then create the base and cap faces and insert them in the face list. Case Study 6.3 provides more details for
building mesh models of prisms.

6.4.2. Arrays of Extruded Prisms - “brick laying”.

Some rendering tools, like OpenGL, can reliably draw only convex polygons. They might faistéorci, to

draw the arrow of Figure 6.38 correctly. If this is so the polygon can be decomposed (Wssetateset of

convex polygons, and each one can be extruded. Figure 6.39 shows some examples, including a few extruded
letters of the alphabet.

Figure 6.39. Extruded objects based on a collection of convex prisms.

Prisms like this are composed of an array of convex prisms. Some of the componentlprisong @nother
and therefore share all or parts of some walls. Because vertex positions are being compugddpmeeision,
the crease where two walls adjoin will usually be invisible.

For this family of shapes we need a method that builds a mesh out of an array of prisms, say
void Mesh:: makePrismArray(...)

which would take as its arguments a suitable list of (convex) base polygons (assumed to hg-piche),

and perhaps a vectdrthat describes the direction and amount of extrusion. The vertex list would contain the
vertices of the cap and base polygons for each prism, and the individual walls, base, and cap of each prism
would be stored in the face list. Drawing such a mesh would involve some wasted effort, since walls that abut
would be drawn (twice), even though they are ultimately invisible.

Special case: Extruded Quad-Strips.

A simpler but very interesting family of such prisms can be built and manipulated more efficieptdy. arle

prisms for which the base polygon can be represented by a “quad-strip”. The quad-strip is an array of quadri-
laterals connected in a chain, like “laying bricks” in a row, such that neighboring faces coincide completely, as
shown in Figure 6.40a. Recall from Figure 2.37 that the quad-strip is an Open@etge@rimitive. A quad-

strip is described by a sequence of vertices

Figure 6.40. Quad-strips and prisms built upon quad-strips.

quad-strip = f,, P,, Pyr «+++sPyst (6.9)

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 21



The vertices are understood to be taken in pairs, with the odd ones forming one “edge” of thepjuatistri
the even ones forming the other edge. Not every polygon can be represented as a quad-strip. (Wehich of t
polygons in Figure 6.39 are not quad-strips? What block letters of the alphabet can be drawn as q)ad-strips

When a mesh is formed as an extruded quad-strip dwlye2tices are placed in the vertex list, and only the
“outside walls” are included in the face list. There avk-2 faces in all. (Why?) Thus no redundant walls are
drawn when the mesh is rendered. A method for creating a mesh for an extruded quad-strip wounldrtake a
ray of 2D points and an extrusion vector as its parameters:

void Mesh:: makeExtrudedQuadStrip(Point2 p[], int numPts, Vector3 d);

Figure 6.41 shows some examples of interesting extruded quad-strips. Case Study 6.4 considers how to make
such meshes in more detail.

Figure 6.41. Extruded quad-strips - arches.

6.4.3. Extrusions with a “twist”.

So far an extrusion just shifts the base polygon to a new position to define the cap polygon. It is easy to gener-
alize on this in a way that produces a much broader family of shapes; create the cap polygon as an enlarged or
shrunk, and possibly rotated, version of the base polygon. Specifically, if the base poRgaithsvertices

{Py Pus ---» Py} the cap polygon has vertices

P ={ Mp,, Mp,, ...,Mp,..} (6.10)
whereM is some 4 by 4 matrix representing an affine transformation. Figure 6.42 shows somesxRants

a and b show “pyramids”, or tapered cylinders” (also “truncated cones”), where theacaipadler version of
the base. The transformation matrix for this is:

Figure 6.42. Pyramids and twisted prisms.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 22



o

o

3
o » O O
~ T o o

based simply on a scaling factor of 0.7 and a translatidt &lpngz. Part ¢ shows a cylinder where the cap
has been rotated through an arglbout thez-axis before translation, using the matrix:

cosg) sing) O O

-sin(@) cosg) 0 O
0 0 1 H
0 0O 01

And part d shows in cross section how apan be rotated arbitrarily before it is translated to the desired
position.

Prisms such as these are just as easy to create as those that use a simple tranglatfenffore list is iden-
tical to the original; only the vertex positions (and the values for the normal vectors) are altered.

Practice exercises.

6.4.1. The tapered cylinderDescribe in detail how to make vertex, normal, and face lists for a tapered cyl-
inder having regular pentagons for its base and cap, where the cap is one-half as large @s the bas

6.4.2. The tetrahedron as a “tapered” cylinderDescribe how to model a tetrahedron as a tapered cylinder
with a triangular base. Is this an efficient way to obtain a mesh for a tatwaRed

6.4.3. An anti-prism. Discuss how to model the anti-prism shown in Figure 6.20b. Can it be modeled as a
certain kind of extrusion?

6.4.4. Building Segmented Extrusions - Tubes and Snakes.

Another rich set of objects can be modeled by employing a sequence of extrusiondttedsiown trans-
formation, and laying them end-to-end to form a “tube”. Figure 6.43a shows a tube made by extruding a
squareP three times, in different directions with different tapers and twists. The first segaseand poly-
gonsM, P andM,P, where the initial matri#, positions and orients the starting end of the tube. The second
segment has end polygoltsP andM,P, etc. We shall call the various transformed squareswhests’ of the
tube. In this example the vertex list of the mesh contains the 16 vévtjged, p,, M, p,, M, p,, M,p,, M,p,,

M,p,, M,p,, ...,M,p,, M,p,, M.p,, M.p,. Figure 6.43b shows a “snake”, so called because the maiticasise

the tube to grow and shrink to represent the body and head of a snake.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 23



Figure 6.43*. A tube made from successive extrusions of a polygon.

Designing tubes based on 3D curves.

How do we design interesting and useful tubes and snakes? We could choose the individualvhatrices
hand, but this is awkward at best. It is much easier to think of the tube as wrapped around a curve which w
shall call thespine of the tube that undulates through space in some organized fashieshall represent the
curve parametrically aS(t). For example, the helix (recall Section 3.8) shown in Figure 6.44a has the para-
metric representation

stereo pair of helix

Figure 6.44. a helix - stereo pair.
C(t) = (coHt), sin(t), bt) (6.11)
for some constarit.

To form the various waist polygons of the tube we sar@ffleat a set of-values, {,, t,, ...}, and build a trans-
formed polygon in the plane perpendicular to the curve at each@@)ntas suggested in Figure 6.45. It is
convenient to think of erecting a local coordinate system at each chosen point along the spine: the local “
axis” points along the curve, and the locabhdy-axes” point in directions normal to teaxis (and normal

to each other). The waist polygon is set to lie in the legglane. All we need is a straightforward way to
determine the vertices of each waist polygon.

Figure 6.45. Constructing local coordinate systems along the spine curve.

It is most convenient to let the cur@ét) itself determine the local coordinate systems. A method well-known
in differential geometry creates tReenet frame at each point along the spine [gray 93]. At each vialoie
interest a vector(t) that is tangent to the curve is computed. Then two vedi@rsandB(t), which are per-
pendicular tor (t) and to each other, are computed. These three vectors constitbteribeframe att,.

Once the Frenet frame is computed it is easy to find the transformation Matrat transforms the base
polygon of the tube to its position and orientation in this frame. It is the transformation that carries the world

5 The VRML 2.0 modeling language includes an “extrusion” node that works in a similar fashion, allowing the
designer to define a “spine” along which the polygons are placed, each with its own transformation.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 24




coordinate system into this new coordinate system. (The reasoning is very similar tedhatksercise 5.6.1
on transforming the camera coordinate system into the world coordinate sytenmptrixM, must carnyi, j,
andk into N(t), B(t), T(t), respectively, and must carry the origin of the world into the spine @@n{Thus
the matrix has columns consisting directlyNgf), B(t), T(t), andC(t) expressed in homogeneous coordi-
nates:

m, = he)Be)Te)ce) 6 6.12)

Forming the Frenet frame.
The Frenet frame at each point along a curve depends on how the curve twists and undulates. It is derived from
certain derivatives o(t), and so it is easy to form if these derivatives can be caclulated.

Specifically, if the formula that we have f@f(t) is differentiable, we can take its derivative and form the tan-
gent vector to the curve at each pof@(t). (If C(t) has component,(t), C,(t), andC,(t) this derivative is
simply C(t) = (C, (1), C, (1), C,(1). This vector points in the direction the curve “is headed” at each value

of t, that is in the direction of thangentto the curve. We normalize it to unit length to obtainuhi tan-
gent vectoratt. For example, the helix of Equation 6.11 has the unit tangent vector given by

T(t) = (- sin(t), cost )b ) (6.13)

1
VJ1+Db?

This tangent is shown for various valueg of Figure 6.46a.

Figure 6.46*. a). Tangents to the helix. B). Frenet frame at various valydsrathe helix.

If we form the cross product of this with any non-collinear vector we must obtain a vector perpendicular
to T(t) and therefore perpendicular to the spine of the curve. (Why?) A particularly good chbie is t

acceleration based on the second derivati(t). So we formC(t) ~ C(t), and since it will be used
for an axis of the coordinate system, we normalize it, to obtain thebimoitmal” vector as:

8ty = SO O

—_— .14
c(t)” c(t)| (614

We then obtain a vector perpendicular to bbft) andB(t) by using the cross product again:

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 25



N(t) =B(t) " T(t) (6.15)

Convince yourself that these three vectors are mutually perpendicular and have unit length, and thus
constitute a local coordinate systenCéf) (known as d&renet frame). For the helix example these
vectors are given by:

;(bsin(t),- bcost )l )

Y (6.16)
N(t) = (- cost ), sint{ )0 )

Figure 6.46b shows the Frenet frame at various valuealohg the helix.

B(t) =

Aside: Finding the Frenet frame Numerically.

If the formula forC(t) is complicated it may be awkward to form its successive derivatives in closed
form, such that formulas fdr(t), B(t), andN(t) can be hard-wired into a program. As an alternative, it is
possible to approximate the derivatives numerically using:

oy =St @ 2 av 9

e
This computation will usually produce acceptable direction3 (¢ B(t), andN(t), although the user
should beware that numerical differentiation is an inherently unstable process [burden85].

(6.17)

Figure 4.47 shows the result of wrapping a decagon about the helix in this way. The helix was sampled at
30 points, a Frenet frame was constructed at each point, and the decagon was erected in the new frame.

Figure 6.47. A tube wrapped along a helix.

Figure 4.48 shows other interesting examples, based on the toroidal spiral (which sanfiirs Section

3.8.) [gray93, p.212]. (The edges of the individual faces are drawn to clarify how the tube twists as it pro-
ceeds. Drawing the edges of a mesh is considered in Case Study 6.7.) A toroidal spiral is formed when a spi-
ral is wrapped about a torus (try to envision the underlying invisible torus here), and it is given by

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 26



Figure 6.48. Tubes based on toroidal spirals. (file: torusKnot.bmp, file: torusKnot7.bmp)

C(t) = ((a+ bcos(qt)) cos(pt ), @+ b cosfit ))sinpt )c sint )) (6.18)

for some choice of constardsb, p, andg. For part a the parametgr&ndq were chosen as 2 and 5, and
for part b they are chosen to be 1 and 7.

Figure 6.49 shows a “sea shell”, formed by wrapping a tube with a growing radius about a helix. To accom-
plish this, the matrix of Equation 6.12 was multiplied by a scaling matrix, where the scale factors also depend

ont:

Figure 6.49. A “sea shell”.

gy 0 0 0
0 gt
oy O 9 00
O 0 10
O 0 01

Hereg(t) =t. It is also possible to add a rotation to the matrix, so that the tube appears to twist more vig-
orously as one looks along the spine.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 27



One of the problems with using Frenet frames for sweeping curves is that the local frame sometimes
twists in such a way as to introduce undesired “knots” in the surface. Recent work, such as [wang97],
finds alternatives to the Frenet frame that produce less twisting and therefore more graceful surfaces.

Practice Exercises.

6.4.4. What is N(t)?Show that(t) is parallel toC(t) - (C(t)XC(t))C(t)/|C(t)|2, so it points in

the direction of the acceleration when the velocity and accelerati@reperpendicular.

6.4.5. The Frame for the helix Consider the circular helix treated in the example above. Show that the
formulas above for the unit tangent, binormal, and normal vectors are correct. Also showsthatéhe
unit length and mutually perpendicular. Visualize how this local coordinatarsystents itself as you
move along the curve.

Figure 6.50 shows additional examples. Part (a) shows a hexagon wrapped about an elliptical spine to form a
kind of elliptical torus, and part (b) shows segments arranged into a knot along a Lissajous figure given by:

C(t) = (rcosMt +f )0 r sin{t )) (6.19)

withM=2 N=3,f =0.

Figure 6.50. a). A hexagon wrapped about an elliptical torus. b). A 7-gon wrapped about a Lissajous figure.
Case Study 6.5 examines more details of forming meshes that model tubes based on a parametric curve.

6.4.5. “Discretely” Swept Surfaces of Revolution.

The tubes above use affine transformations to fashion a new coordinate system at each spine point. If we use
pure rotations for the affine transformations, and place all spine points at the origin, a righobghexdral

shapes emerges. Figure 6.51 shows an example, where a base polygon - now galiéitethes initially

positioned 3 units out along the x-axis, and then is successively rotated in steps apeisiie form an
approximation of a torus.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 28




Figure 6.51. Rotational sweeping in discrete steps.

This is equivalent taircularly sweeping a shape about an axis, and the resulting shape is often called a
face of revolution We examine true surfaces of revolution in Section 6.5; here we are forming only a discrete
approximation to them since we are sweeping in discrete steps.

Figure 6.52 shows an example that produces pictures of a martini glass. The profile herelieseat poly-
gon but a simple polyline based on poiRts (x, Y, 0). If we choose to place this polylinekaequispaced
angles about thg-axis, we set the transformations to have matrices:

Figure 6.52. Approximating a martini glass with a discretely swept polyline. a). the profile, byefbtessir-
face.

cos@;) 0 sing ) O

= 0 1 0 0
' -sin@@,) 0 cos@ ) O
0 0 0 1

whereq, = 2pi/K, i =0, 1, ..., K-1 Note there is no translation involved. This transformation is simple enough
that we can write the positions of the vertices directly. The rotation sets the points-tif thaist” polyline at:

(x cogq), ¥, X sin(q)) (6.20)
Building meshes that model surfaces of revolution is treated further in Case Study 6.6.

6.5. Mesh Approximations to Smooth objects.

So far we have built meshes to represent polyhedra, where each shape is a collection of flat polygonal faces.
They tend to be “data-intensive”, specified by listing the vertices of each face individually. Now we want to
build meshes that attempt to approximate inherently smooth shapes like a sphere or torus. Theme shapes
normally defined by formulas rather than data. We also want to arrange matters so that theseaméshes
smoothly shadecven though they are represented by a collection of flat faces as before, the proper algorithm
(Gouraud shading) draws them with smooth gradations in shading, and the indiz@hsaafe invisible (recall
Figure 6.1). All this requires is that we find the proper normal vector at each vertex cheac8gecifically,

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 29



we compute the normal vector to the underlying smooth surface. We discuss the Gouraud shading algorithm in
Chapter 11.

The basic approach for each type of surface potpgonalize (also calledesselatg it into a collection of flat

faces. If the faces are small enough and there is a graceful change in direction from one face to the next, the
resulting mesh will provide a good approximation to the underlying surface. The faces have vertices that are
found by evaluating the surface’s parametric representation at discrete points. A mesh is created by building a
vertex list and face list in the usual way, except here the vertices are computed from formulas. The same is
true for the vertex normal vectors: they are computed by evaluating formulas for the norreaudabe at

discrete points.

6.5.1. Representations for Surfaces.
To set the stage, recall that in Section 4.5.5 we examined the p&olrgiven parametrically by

P(u,v) =C +au +bv (6.21)

whereC is a point, ané andb are vectors. The range of values for the paramatenslv is usually re-
stricted to [0, 1], in which case the patch is a parallelogram in 3D with corner v&tiCesa, C + b,
andC +a + b, (recall Figure 4.31).

Here we enlarge our interests to nonlinear forms, to represent more general surface shapes. We introduce
three function(), Y(), andZ() so that the surface has parametric representation in point form

P(u,v) = (X(u, v), Y(u, v), Z(u, v)) (6.22)

with u andv restricted to suitable intervals. Different surfaces are characterized by differetidriark,
Y, andZ. The notion is that the surface is “aK(0, 0),Y(0, 0),Z(0, 0)) when botlu andv are zero, at
(X(1, 0),Y(1, 0),2(1, 0)) whenu= 1 andv= 0, and so on. Keep in mind that two parameters are re-
quired when representing a surface, whereas a curve in 3D requires only one.uedtingvhile
keepingv constant generates a curve calledemntour. Similarly, lettingv vary while holdingu con-
stant produces a-contour. (Look ahead to Figure 6.58 to see exampteendv-contours.)

The implicit form of a surface.

Although we are mainly concerned with parametric representations of different surfaces, it will prove
useful to keep track of an alternative way to describe a surface, throumgplitst form. Recall from
Section 3.8 that a curve in 2D has an implicit fdf(r, y) which must evaluate to O for all points ¥)

that lie on the curve, and for only those. For surfaces in 3D a similar funE{ans 2) exists that
evaluates to 0 if and only if the point §, 2) is on the surface. The surface therefore hamalicit
equation given by

Fxy,9=0 (6.23)

that is satisfied for all points on the surface, and only those. The equation constrains the vedyedhat v
of x, y, andz must be related to confine the poirty, 2) to the surface in question. For example, recall
(from Chapter 4) that the plane that passes through Ba@nd has normal vectoris described by the
equationn, x +n y +n,z=D (whereD = n*B), so the implicit form for this plane X, y, 2 =n x +
ny+n,z-D. Sometimes it is more convenient to thinkrods a function of a poim, rather than a
function of three variables y, andz, and we write=(P) = 0 to describe all points that lie on the surface.
For the example of the plane here, we would defif® = n- (P - B) and say thaP lies in the plane if

and onIy ifF(P) =n- (P B) is zero. If we wish to work with coordinate frames (recaII Sectlon 4.5) so

thatP is the 4- tupItP (%, y,z1)", the implicit form for a plane is even S|mpIeFr(P) fixP,
wheren = (n,, n,n, D)captures both the normal vector and the valDe —

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 30



It is not always easy to find the functiiix, y, 2) or F(P) from a given parametric form (nor can you
always find a parametric form when givE(x, y, 2)). But if both a parametric form and an implicit form
are available it is simple to determine whether they describe the same surface. Simply skfstifyte
Y(u, v), andZ(u, v) for x, y, andz, respectively, ifF(x, y, 2) and check that is O for all values ofi andv
of interest.

For some surfaces like a sphere that enclose a portion of space it is meaningful to define an “inside” re-
gion and an “outside” region. Other surfaces like a plane clearly divide 3D space inagiorsr but

one must refer to the context of the application to tell which half-space is the inside and which the out-
side. There are also many surfaces, such as a strip of ribbon candy, for which it makes little sense to
name an inside and an outside.

When it is meaningful to designate an inside and outside to a surface, the implidi(*osnz) of a
surface is also called itsside outside function We then say that a poir, §, 2) is

« inside the surface if: F(x,y,2<0
« on the surface if: Fx,y,2=0
» outside the surface if: Fix,y,2>0 (6.24)

This provides a quick and simple test for the disposition of a given paigt €) relative to the surface:

Just evaluat&(x', y', Z) and test whether it is positive, negative, or zero. This is seen to be useful in hid-
den line and hidden surface removal algorithms in Chapter 14, and in Chapter 15 it is usecaingy
algorithms. There has also been vigorous recent activity in rendering surfaces directly from ff@ir imp
forms: see [bloomenthal, 97].

6.5.2. The Normal Vector to a Surface.

As described earlier, we need to determine the direction of the normal vector to a surface at ahy desire
point. Here we present one way based on the parametric expression, and one based on therimplici

of the surface. As each surface type is examined later, we find the suitable expressions for its normal
vector at any point.

The normal direction to a surface can be defined at a [R{int,v,), on the surface by considering a

very small region of the surface aroup@,, v,). If the region is small enough and the surface varies
“smoothly” in the vicinity, the region will be essentially flat. Thus it behaves locally like a tiny planar
patch and has a well-defined normal direction. Figure 6.53 shows a surface patcle wiimthal vector
drawn at various points. The direction of the normal vector is seen to be different at different points on
the surface.

Figure 6.53*. The normal vector to a surface.
We use the nam@(u, v) for the normal aty, v). We now examine how it can be calculated.

The Normal Vector for a Surface Given Parametrically.

Not surprisingly,n(u,, v,) takes the form of a cross product between two vectors that lie in the tiny planar
patch neary, v,). Being a cross product it is guaranteed to be perpendicular to both vectors. The two
vectors in the plane (indicated gsandty in the figure) are certain tangent vectors. Calculus texts show

that they are simply related to partial derivativep(of v) (the vector from the origin to the surface

point P(u, v)6), evaluated at the point in question [thomas53]. An expression for the normal vector is
therefore

6 Sincep(u, v) is simply the differenc@(u, v) - (0,0,0), the derivative qf() is the same as that BY).

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 31



n(uy,V,) = % ’ % (6.25)

U=y, V=\y
where the vertical bar | indicates that the derivatives are evaluated @t v = v,. Formed this way,
n(u,, v,) is not automatically a unit length vector, but it can be normalized if desired.

Example 6.5.1: Does this work for a planeZonsider the plane given parametricallyRfy, v) = C +
au + bv. The partial derivative of this with respectu@s justa, and that with respect tois b. Thus ac-
cording to Equation 6.1%(u, v) = @ b, which we recognize as the correct result.

More generally, the partial derivatives pfu, v) exist whenever the surface is “smooth enough.” Most
of the surfaces of interest to us in modeling scenes have the necessary smoothreess sintple

enough mathematical expressions so that finding the required derivatives is not difficult. Béoause

= X(u, v)i + Y(u, v)j + Z(u, v)k, the derivative of a vector is just the vector of the individual derivatives:

fo(u,v) _ X(uv) Y(uy) 17Z(u V)
fu /TR VR (¥

We apply these formulas directly to each surface type we examine later.

(6.26)

The Normal Vector for a Surface given Implicitly.

An alternative expression is used if the surface is given by an implicit Fgxyy, z2) = 0. The normal
direction at the surface poink, {, 2), is found using thgradient,

NF , of F, which is given by [thomas 53]:

N(%, Yo, %)=NH_, . = LA Ll (6.27)

x Ty Tz X=%,Y= Y0, F %
where each partial derivative is evaluated at the desired pQint, &). If the point &, y,, z) for the
surface in question corresponds to the pB{it,v,) of the parametric form, ther(x,, y,, z) has the same
direction a:(u,,v,) in Equation 6.19, but it may have a different length. Again, it can be normalized if
desired.

Example 6.5.2. The plane againConsider once again the plane with norm#tat passes through point
A, given implicitly by F(X,y,2 =nX(x ¥ 2 - A=0, or n,x+ n, y+ n z nx A=0. This has

gradientNF =n as expected.

Note that the gradient-based form gives the normal vector as a funcipp ahdz, rather than ofi

andv. Sometimes for a surface we knbeththe inside-outside functioi(x, y, ), and the parametric
form, p(u, v) = X(u, V)i + Y(u, v)j + Z(u, v)k. In such cases it may be easiest to find the parametric form,
n(u, v), of the normal aty, v) by a two-step method: (1) Use Equation 6.21 to get the normalyatz)

in terms ofx, y, andz, and then (2) substitute the known functidits, v) for x, Y(u, v) for y, andz(u, v)

for z. Some of the later examples illustrate this method.

6.5.3. The Effect of an Affine Transformation.

We shall need on occasion to work with the implicit and parametric forms of a surface after the surface
has been subjected to an affine transformation. We will also want to know how the normal to the surface
is affected by the transformation.

Suppose the transformation is represented by 4 by 4 mtigxd that the original surface has implicit
form (in terms of points in homogeneous coordinafedpP) and parametric

form 5(u, V=(X(uV, XYuY, Z( uM)".Thenitis clear that the transformed surface has para-

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 32



metric formMP(U, V) (why?). It is also easy to show (see the exercises) that the transformed surface

hasimplicit form F((ﬁ) given by:
F&P) = F(M"'P)
Further, if the original surface has normal vectr, v) then the transformed surface has:

- normal vectorM™ "n(u, V)

For example, suppose we transform the plane examined above, giFe(rﬁ)yz 71 P with
n=(n,n,n, D). The transformed plane has implicit fofP) = i { M"*P). This can be writ-

ten (see the exercises)@dl'Tﬁ) xP, so the normal vector of the transformed plane involves the in-
verse transpose of the matrix, consistent with the claimed form for the normal to a general surface.

Practice Exercises.
6.5.1. The implicit form of a transformed surface Suppose all points on a surface satfsfly) =

0, and thaM transformsPinto Q i.e. Q MP. Then argue that any po@ on the transformed
surface comes from a poifd” Q and those points all satlsﬁ(M Q) 0. Show that this

proves that the implicit form for the transformed surfack' |éQ) =F(M" Q)

6.5.2. How are normal vectors affectedRetn = (n, n,, n,, 0) be the normal & and letv be any
vector tangent to the surfaceRatThenn must be perpendicular toand we can write - v = 0.

a). Show that the dot product can be written as a matrix praduct: 0 (see Appendix 2).

b). Show that this is still 0 when the matrix prodMcM is insertedn'M™*Mv = 0.

c). Show that this can be rewritten 8'0)(Mv)=0, soM'n is perpendicular ta\v).

Now since the tangenttransforms tdvlv, which is tangent to the transformed surface, show that
this saysV'n must be normal to the transformed surface, which we wished to show.

d). The normal to a surface is also given by the gradient of the implicit form, so the normal to the
transformed surface at point P must be the gradieR(\fP). Show (by the chain rule of calculus)
that the gradient of this functioni4™ multiplied onto the gradient &f().

6.5.3. The tangent plane to a transformed surfacd.o find how normal vectors are transformed

we can also find how the tangent plane to a surface is mapped to the tangent plane on the trans-
formed surface. Suppose the tangent plane to the original surface & pasmparametric repre-
sentatiorP + au + bv, wherea andb are two vectors lying in the plane. The normal to the surface is
thereforen =a” b.

a). Show that the parametric representation of the transformed plMPRetidlau + Mbv, and that

this plane has normal' = (Ma) = (Mb).

b). Referring to Appendix 2, show the following identity:

(Ma)” (Mb)= (det M)M " (a" b)

This relates the cross product of transformed vectors to the cross product of the vegtisedvies. ). Show
thatn’ is therefore parallel tf'n.

6.5.4. Three “generic” shapes: the sphere, cylinder, and cone.

We begin with three classic objects, “generic” versions of the sphere, cylamtecone. We develop

the implicit form and parametric form for each of these, and see how one might make meshes to ap-
proximate them. We also derive formulas for the normal direction at each point on these objects. Note
that we have already used OpenGL functions in Chapter 5 to draw these shapes. Adding our own tools
has several advantages, however: a). We have much more control over the detageaf tfatushape

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 33



being created; b). We have the object as an actual mesh that can be operated upon by methods of the
Mesh class.

The Generic Sphere
We call the sphere of unit radius centered at the origin the “generic sphere” (see Figure 6@4a. It
the basis for all other sphere-like shapes we use. It has the familiar implicit form

F(x,y,2) = x2+y2+722-1 (6.28)

In the alternate notatioR(P) we obtain the more elegaP) = P| - 1. (What would these forms be if
the sphere has radi&®)

A parametric description of this sphere comes immediately from the basic descriptionrdfia po
spherical coordinates (see Appendix 2). We choose todetrespond to azimuth anctorrespond to
latitude. Then any poir® = (x, y, 2 on the sphere has the representat@y¥{) coqu), cogV) sin(u),
sin(v)) in spherical coordinates (see Figure 6.54b). Wa ietry over (0, B) andv vary over (p/2, p/2)
to cover all such points. A parametric form for the sphere is therefore

a). generic sphere b). parametrized by azimuth, latitude. c¢). par's & mefid's

Figure 6.54. a). The generic sphere, b) a parametric form. c). parallels and meridians
P(u, v) = (cogv) coqu), cogV) sin(u), sin(v)) (6.29)

It's easy to check that this is consistent with the implicit form: substitute terms of Equation 6.29 into cor-
responding terms of Equation 6.28 and see that zero is obtaireyfeslue ofu andv.

(Question: What is the corresponding parametric form if the sphere instead hafradélis centered

at @, b, ©)?)

For geographical reasons certain contours along a sphere are given common names. For ¢his param
zationu-contours are callenheridians, andv-contoursare known aparallels, as suggested in Figure
6.54c. (Note that this classical definition of spherical coordinates, parallels aidiamecauses the
sphere to appear to lie on its side. This is simply a result of how we sketch 3D figures, wigixige
pointing “up”.)

Different parametric forms are possible for a given shape. An alternative pardoratrior the sphere
is examined in the exercises.

What is the normal directiom(u, v) of the sphere’s surface at the point specified by paramete)® (
Intuitively the normal vector is always aimed “radially outward”, so it must be parallel to the vector
from the origin to the point itself. This is confirmed by Equation 6.21: the gradient is simply 2(
which is proportional t&. Working with the parametric form, Equation 6.19 yieids, v) = -cas(v)p(u,

v), son(u, v) is parallel tgp(u, v) as expected. The scale factoogv) will disappear when we normalize
n. We must make sure to ugéu,v) rather thanp(u,v) for the normal, so that it does indeed point radi-
ally outward.

The Generic Cylinder.
We adopt as the “generic” cylinder the cylinder whose axis coincidesheithaxis, has a circular cross
section of radius 1, and extendsifiom 0 to 1, as pictured in Figure 6.55a.

a). generic cylinder b). tapered cylinder

Figure 6.55. The generic cylinder and the tapered cylinder.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 34



It is convenient to view this cylinder as one member of the large famipefed cylinders, as we did

in Chapter 5. Figure 6.55b shows the “generic” tapered cylinder, having a “small radsushefiz= 1.
The generic cylinder is simply a tapered cylinder with1. Further, the generic cone to be examined
next is simply a tapered cylinder wist= 0. We develop formulas for the tapered cylinder with an arbi-
trary value ofs. These provide formulas for the generic cylinder and cone by setiing or 0, respec-
tively.

If we consider the tapered cylinder to be a thin hollow “shell'w## is given by the implicit form
F(X,y,2= X+ y-(@+(s 1) Y foro<z<1 (6.30)
and by the parametric form:

P(u,v) = (A+(s- D ycos( 9.(+ (s J ysin( y ¥ (6.31)

for appropriate ranges afandv (which ones?). What are these expressions for the generic cylinder
with s=17?

When it is important to model the tapered cylinder as a solid object, we add two circular discs at its
ends: ébaseand acap. The cap is a circular portion of the plarwe 1, characterized by the inequabidy
+y’ <&, or given parametrically bi(u, v) = (v cogu), vsin(u), 1)  forvin [0, s]. (What is the para-
metric representation of the base?)

The normal vector to the wall of the tapered cylinder is found using Equation 6.27. (Be sure to check
this). It is

nxy,2 =Xy, «(s- 1)1+ 6- 1)2) ) (6.32)

or in parametric fornm(u, v) = (coqu), sin(u), 1 —s). For the generic cylinder the normal is simply
(coqu), sin(u), 0). This agrees with intuition: the normal is directed radially away from the axis of the
cylinder. For the tapered cylinder it is also directed radially, but shifted by tantmsomponent.

(What are the normals to the cap and base?)

The Generic Cone.

We take as the “generic” cone the cone whose axis coincides wittaiti® has a circular cross section
of maximum radius 1, and extendszifrom O to 1, as pictured in Figure 6.56. It is a tapered cylinder
with small radius ofs = 0. Thus its wall has implicit form

generic cone

Figure 6.56. The generic cone.

Fix,y,2)=X+y-(1-2°=0 forO0<z<1 (6.33)

and parametric forr®(u, v) = ((1v) cogqu), (1-v) sin(u), v) for azimuthu in [0, 2] andv in [0, 1]. Us-
ing the results for the tapered cylinder again, the normal vector to the wall of the cqne 1s7. What

is it parametrically?

For easy reference Figure 6.57 shows the normal vector to the generic surfaces disdussed.

surface n(u, v) atp(u, v) NF(x,Y, 2)
sphere p(u, V) x Y2
tapered cylinder doqu), sin(u), 1 —s) (X, y, -(s- 1)(1+ 61)2))

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 35



cylinder (cos(u), sin(u), 0) x(y, 0)
cone coqu), sin(u), 1) xvy,1-2

Figure 6.57. Normal vectors to the generic surfaces.

Practice Exercises.

6.5.4. Alternative representation for the generic sphereWe can associate different geometric quan-
tities with the parametersandv and obtain a different parametric form for the sphéfe again use pa-
rameteru for azimuth, but use for the height of the point above tkgplane. All points at height lie

on a circle of radius/1- v* , so this parametric form is given by:

P,(u,v) = (V1- V? coqu), V1- VZ sin(u), v) (6.34)

for uin [0, 2p] andv in [-1,1]. Show thaP, lies unit distance from the origin for allandv.

6.5.5. What's the surface? et A be a fixed point with position vectar andP be an arbitrary point
with position vectop. Describe in words and sketch the surface described hy:a¥. 0; b).p-a = fal;
c).pxa=fgd).p-a=p-p;e).p-a=plpl2.

6.5.6. Finding the normal vector to the generic cylinder and con®erive the normal vector for the
generic tapered cylinder and the generic cone in two ways:

a). Using the parametric representation;

b). Using the implicit form, then expressing the result parametrically.

6.5.7. Transformed SpheresFind the implicit form for a generic sphere that has been scaleblyir2
and iny by 3, and then rotated 3@bout thez-axis.

6.5.5. Forming a Polygonal Mesh for a Curved Surf  ace.

Now we examine how to make a mesh object that approximates a smooth surface such as the sphere,
cylinder, or cone. The process is calfdygonalization or tesselation and it involves replacing the

surface by a collection of triangles and quadrilaterals. The vertices of these polygons lie in the surface it-
self, and they are joined by straight edges (which usually do not lie in the surface). Cresipiioy

choosing a number of valueswandv, and “sampling” the parametric form for the surface at these

values to obtain a collection of vertices. These vertices are placed in a vertex list. A face list is then cre-
ated: each face consists of three or four indices pointing to suitable vertices in the vertex list. Associated
with each vertex in a face is the normal vector to the surface. This normal vector is the normal direction
to the true underlying surface at each vertex location. (Note how this contrasts with the normal used
when representing a flat-faced polyhedron: there the vertex of each face is associated with the normal to
the face.)

Figure 6.58 shows how this works for the generic sphere. We think of slicing up the sphere along azi-
muth lines and latitude lines. Using OpenGL terminology of “slices” and “stacks” (s&er5g.6.3), we
choose to slice the sphere imSlices “slices” around the equator, anStacks “stacks” from the

south pole to the north pole. The figure shows the example of 12 slices and 8 stacks. The large
nSlices andnStacks are, the better the mesh approximates a true sphere.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 36



Figure 6.58*. a). A mesh approximation to the generic sphere. b). Numbering the vertices.

To make slices we neei$lices values ofu between 0 and® Usually these are chosen to be equi-
spacedu, = 2pi/nSlices ,i=0, 1, ...nSlices -1. As for stacks, we put half of them above the
equator and half below. The top and bottom stacks will consist of triangles; all other faces wétibe qu

rilaterals. This requires we defineStacks + 1) values of latitude:; ¥ p - pj/nStacks ,j=0, 1, ...,
nStacks.

The vertex list can now be created. The figure shows how we might number the verticeddtimg is
a matter of convenience): We put the north polgtif0], the bottom points of the top stack into the next
12 vertices, etc. With 12 slices and 8 stacks there will be a total of 98 points (why?)

The normal vector list is also easily createdrm [k] will hold the normal for the sphere at vertex
pt [k]. norm[k] is computed by evaluating the parametric fornm(@fv) at the sameu(v) used for the
points. For the sphere this is particularly easy simren [K] is the same agt [K].

For this example the face list will have 96 faces, of which 24 are triangles. We can put the top triangles
in the first 12 faces, the 12 quadrilaterals of the next stack down in the next 12 faces, etc. Eue first f
faces will contain the data:

number of vertices: 3 3 3
vertex indices: 012 023 034
normal indices: 012 023 034

Note that for all meshes that try to represent smooth shapeerthindex is always the same as the
vertindex , so the data structure holds redundant information. (Because of this, oteis®a more
streamlined data structure for such meshes. What would it be?) Polygonalization of the sphere in this
way is straightforward, but for more complicated shapes it can be very tricky. S¢éofrédsther dis-
cussions.

Ultimately we need a method, suchmagkeSurfaceMesh() , that generates such meshes for a given
surfaceP(u, v). We discuss the implementation of such a function in Case Study 6.13.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 37




Note that some graphics packages have routines that are highly optimized when they operate on trian-
gles. To exploit these we might choose to polygonalize the sphere into a collection of treugles,
viding each quadrilateral into two triangles.

A simple approach would use the same vertices as above, but alter the face list replacing each quadrilat-
eral with two triangles. For instance, a face that uses vertices 2, 3, 15, 14 might be subdivided into two
triangles, once using 2, 3, 15 and the other using 2, 15, 14.

The sphere is a special case of a surface of revolution, which we treat in Section 6.5.7. The tapered cy
inder is also a surface of revolution. It is straightforward to develop a mesh raotted tapered cylin-
der.Figure 6.59 shows the tapered cylinder approximated8itbes = 10 anchStacks =1. A

decagon is used for its cap and base. (If you prefer to use only triangles in a mesh, fhleened|s, and

the base could be dissected into triangles. (How?))

Figure 6.59. A mesh approximation to the tapered cylinder.

Practice Exercises.

6.5.8. The mesh for a given sphereéWrite out the vertex, normal, and face lists for the sphere, when
nSlices =6 andnStacks =4, choosing a convenient numbering scheme.

6.5.9. Restricting the mesh to triangular facesAdjust the lists in the previous exercise for the case
where all faces are triangles.

6.5.10. The mesh for a cylinder and con&Vrite out vertex, normal, and face lists for the generic ta-
pered cylinder that useSlices = 4 andnStacks = 2.

6.5.6. Ruled Surfaces.

We resume an exploration of curved surfaces with the familylefl surfaces This family is simple to
describe yet provides a wide variety of useful and interesting shapes. We study how to desaribe t
polygonalize them and how to compute the normal vector to them at each point.

Ruled surfaces (also called "lofted surfaces") are swept out by moving a straight line along a particular
trajectory. They are composed of a collection of straight lines in the following sense:

Definition: A surface iguled if through every one of its points there passes at least one line that lies
entirely on the surface.

Because ruled surfaces are based on a family of lines, it is not surprising to find bthd paramet-
ric representations something akin to the familiar form for a B(§,= (1 -v) P + v P, whereP_andP

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 38



are points. But for ruled surfaces the poltandP, become functions of another parameteP_ be-
comesP (u), andP becomes (u). Thus the ruled surfaces that we examine have the parametric form

P(u,v) = (1 -v) P(u) +vP,(u) (6.35)

The function®” (u) andP,(u) define curves lying in 3D space. Each is described by three component
functions, as iP,(u) = (X (u), Y (u), Z (u)). BothPy(u) andP,(u) are defined on the same intervaliin
(commonly from 0 to 1). The ruled surface consists of one straight line joining each panespoad-
ing points,P,(u’) and P,(u’), for eachu’ in (0,1), as indicated in Figure 6.60. At 0 the surface is “at”
P,(u), and atv = 1 it is atP,(u). The straight line ati = U’ is often called theuling atu'.

1" Ed. Figure 9.3

Figure 6.60. A ruled surface as a family of straight lines.

For a particular fixed value; the v'-contour is some blend of the two curvBegu) andP,(u). It is an af-
fine combination of them, with the first weighted by (2)-and the second by. Whenv' is close to 0,
the shape of the-contour is determined mainly bB9,(u), whereas whew is close to 1, the curve,(u)
has the most influence.

If we restrictv to lie between 0 and 1, only the line segment between corresponding points on the curves
will be part of the surface. On the other hand,ig not restricted, each line will continue forever in both
directions, and the surface will resemble an unbounded curved “shaetéd¥patch is formed by re-

stricting the range of bothandv, to values between, say, 0 and 1.

A ruled surface is easily polygonalized in the usual fashion: choose a set of sarapths and com-
pute the positiofP(u, v) and normah(u, v) at each. Then build the lists as we have done before.

Some special cases of ruled surfaces will reveal their nature as well as their versatility. We discuss three
important families of ruled surfaces, tbene thecylinder, and thebilinear patch.

Cones.
A cone is a ruled surface for which one of the curves,RBfy), is asinglepointP,(u) = P,, the “apex”
of the cone, as suggested in Figure 6.61a. In Equation 6.35 this restriction produces:

Figure 6.61. A cone.
P(u,v) = (1-v) P, +vP,(u) {a general cone} (6.36)

For this parameterization all lines pass throBghtv = 0, and througP,(u) atv = 1. Certain special
cases are familiar. A circular cone results wRgn) is a circle, and a right circular cone results when
the circle lies in a plane that is perpendicular to the line joining the circle's ceRfeilte specific ex-
ample shown in Figure 6.61b udegu) = (r(u) cosu, r(u) sinu, 1) where the “radius” curwgu) varies
sinusoidally:r(u) = 0.5 + 0.Zog5u).

Cylinders.

A cylinder is a ruled surface for whid¢h(u) is simply a translated version Bf(u): P,(u) = P,(u) +d,

for some vectod, as shown in Figure 6.62a. Sometimes one speaks of “sweeping” the line with end-
points P,(0) andP,(0) +d (often called the “generator”) along the cuRu) (often called the “direc-
trix”), without altering the direction of the line.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 39



Figure 6.62*. a). A cylinder. b). ribbon candy cylinder.
The general cylinder therefore has the parametric form
P(u, v) = P,(u) + dv (6.37)

To be a true cylinder, the cur®&(u) is confined to lie in a plane. F(u) is a circle the cylinder is@r-

cular cylinder. The directiord need not be perpendicular to this plane, but if it is, the surface is called a
right cylinder . This is the case for the generic cylinder. Figure 6.55b shows a “ribbon candy cylinder”
whereP,(u) undulates back and forth like a piece of ribbon. The ribbon shape is explored in the exer-
cises.

Bilinear Patches.

A bilinear patch is formed when bo)(u) andP,(u) are straight line segments defined over the same
interval inu, say, 0 to 1. Suppose the endpoint®§f) areP,, andP,,, (so thatP,(u) is given by (1 -

u)P,, + uP,), and the endpoints &f,(u) areP,, andP,,. Then using Equation 6.35 the patch is given pa-
rametrically by:

Puv)=@2-vA-uP,+(1-V)ubP, + v(1-u)P,+uvPkP, (6.38)

This surface is called “bilinear” because its dependence is lineiaand linear irv. Bilinear patches
need not be planar; in fact they are planar only if the Fj@s andP,(u) lie in the same plane (see the
exercises). Otherwise there must be a “twist” in the surface as we move from one of ting daBsito
the other.

An example of a nonplanar bilinear patch is shown in Figure 863.is the line from (2, -2, 2) to (2,
2, -2), andP (u) is the line from (-2,-2,-2) to (-2, 2, 2). These lines are not coplanar. Sexaratours
are shown, and the twist in the patch is clearly visible.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 40




Figure 6.63. A bilinear patch.

The normal vector to a bilinear patch is easily found using Equation 6.26. If the patch is planar the di-
rection of the normal is constant but its magnitude can varywatidv. If the patch is nonplanar both
the magnitude and direction of the normal vector vary with position.

Other ruled surfaces.

There are many other interesting ruled surfaces. Figure 6.64a shows a double helix formeguyvhedP,(u)

are both helixes that wind around each other. Part b shows the intriguing M&bius strip that has only one edge. The
exercises explore the parametric representation of these surfaces. Part ¢ shows a vaulted rgnbdfifadr

ruled surfaces. Case Study 6.8 examines modeling such vaulted domes of a cathedral.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 41



Figure 6.64. a). double helix b). Mébius strip, ¢).Vaulted roof.

Bilinearly blended Surf aces - Coons Patches.

An interesting and useful generalization of a ruled surface, which interpolates two boundarygujves
andP, (u), is a bilinearly blended patch that interpolatefota boundary curves. This family was first
developed by Steven Coons [coons...] and is sometimes called a Coons patch.

Figure 6.65 shows four adjoining boundary curves, namédg, p,,(u), p,,(v), andp,(v). These curves
meet at the patch corners (wherandv are combinations of 0 and 1) but otherwise have arbitrary
shapes. This therefore generalizes the bilinear patch for which the boundary curves are straight lines.

Figure 6.65. Four boundary curves determining a Coons patch.

We want a formuld@(u, v) that produces a smooth transition from each boundary curve to the other as
andv vary.

A natural first guess is to somehow combine a ruled patch built @y(@fandp,,(u), with a ruled

patch built out ofy, (v) andp, (v). But simply adding such surfaces doesn't work: it fails to interpolate
the four curves properly (and it's illegal: it results in a non-affine combination of points!). The trick is to
add these surfaces and then subtract the bilinear patch formed from the four corners of thedégurves
ure 6.66 shows visually how this works [heckbert94].

surf 1 + surf 2 - surf 3 = coons patch

Figure 6.66. Combining patches to create the Coons patch.

The formula for the patch is therefore

Puv) = [R(VA-Y + (Y U4+ [p(¥l- y+ p(uY
11-u(1-V) P, (O + u(1-V)p, (Qu + m, (Pv (1-u) + g, (Y ]

Note that at eachu(V) this is still an affine combination of points, as we insist. Check that @=(0,

0) this evaluates tp,,(0), and similarly that it coincides with the other three corners at the other extreme
values ofu andv. Figure 6.67 shows an example Coons patch bounded by curves that have a sinusoidal
oscillation.

(6.39)

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 42



Figure 6.67. Example of a Coons patch.

Practice Exercises.

6.5.11. A Pyramid is a coneWhat shape should (u) have to create a ruled surface that is a pyramid

with a square base? Give specific expressions for the curve and the mmrthat the square base of the
pyramid lies in the, z-plane, centered at the origin, with sides of length 2. The pyramid should have
height 1.5.

6.5.12. Ribbon candy cylindersFind a parametric form fd?,(u) that produces a good approximation to

the ribbon candy cylinder shown in Figure 6.62b. Consider the ribbon as wrapped about a succession of

abutting circular cylinders of radius 1. The center ofitttecylinder lies atX, y) = (id, £r), where the

+ and - alternate, ardf = 1 -r’. Choose some value pbetween 0 and 1.

6.5.13. The double helixThe parametric form for a helix isdgt), sin(t), t). Find expressions for two
helices,P,(u) andP,(u), both of which wind around theaxis yet are 180ut of phase so that they wind
around each other. Write the parametric form for the ruled surface formed using these two curves.
6.5.14. The Mobius strip Find a parametric form for the Mdbius strip shown in Figure 6.64b.

Hint: revolve a line about theaxis, but put in a twist as it goes around. Does the following attempt do
the job:P (u) = (coq2pu)), sin(2p), u), andP,(u) = (coq2pu)), sin(2pl), 1-u)?

6.5.15. Is it affine? Show that the Coons patéffu,v) of Equation 6.33 is composed of an affine combi-
nation of points.

6.5.16. Does it really interpolate?Check thaP(u, v) of Equation 6.33 interpolates each of the four
boundary curves, and therefore interpolates each of the four corners.

6.5.7. Surfaces of Revolution.

As described earlier, a surface of revolution is formed intational sweepof a profile curve(C,

around an axis. Suppose we place the profile ixiptane and represent it parametrically®y) =

(X(v), Z(v)). To generate the surface of revolution we sweep the profile abautitie under control of

the u parameter, witlu specifying the angle through which each point has been swept about the axis. As
before, the different positions of the cu®@earound the axis are calladeridians. When the pointX(v),

0, Z(v)) is rotated by radians, it becomeX(v)coqu), X(v)sin(u), Z(v)). Sweeping it completely around
generates a full circle, so contours of consteante circles, callegarallels of the surfacé The parallel

atv has radiux(v) and lies at heigh(v) above they-plane. Thus the general point on the surface is

7 More formally, ameridian is the intersection of the surface with a plane that contains the axis of revolution.,
and aparallel is the intersection of the surface with a plane perpendicular to the axis.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 43



P(u, v) = (X(V) cos(u), X(Ysin(Y, 4) (6.40)
The generic sphere, tapered cylinder, and cone are all familiar special cases. (What are their profiles?)

The normal vector to a surface of revolution is easily found by direct application of Equation 6.34 to
Equation 6.19 (see the exercises). This yields

n(uv) = X(WZ Ycos(u, Z ysin( o= X ¥ [ (6.42)

where the dot denotes the first derivative of the function. The scaling ¥@®)atisappears upon nor-
malization of the vector. This result specializes to the forms we found above fantile generic
shapes (see the exercises).

For example, théorus is generated by sweeping a displaced circle aboutdes, a shown in Figure
6.68. The circle has radidsand is displaced along tlkeaxis byD, so that its profile is C(v) =D(+ A
cogVv), Asin(v)). Therefore the torus (Figure 6.68b) has representation

Figure 6.68. A torus.
P(u, v) = (O + AcogqV)) coqu), (D + A cogV)) sin(u), A sin(v)) (6.42)
Its normal vector is developed in the exercises.

We usually sweep a curve lying in a plane about an axis that lies in that plane, but a surface of revolution
can be formed by sweeping about any axis. Choosing different axes for a given profile can lead to inter-
esting families of surfaces. The general formHr, v) for the surface of revolution about an arbitrary

axis is developed in the exercises.

A mesh for a surface of revolution is built in a program in the usual way (see Section 6.5.4). We choose
a set ofu andv values, {1} and {v}, and compute a vertex at each fr@fu, v), and a normal direction

from n(u, v)). Polygonal faces are built by joining four adjacent vertices with straight lines. A method to
do this is discussed in Case Study 6.13.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 44



Figure 6.69 shows another example in which we try to model the dome of the exquisite Taj Mahal in
Agra, India, shown in part a. Part b shows the profile curve irnzpéane, and part ¢ shows the resulting
surface of revolution. Here we describe the profile by a collection of data @pni;, Z), since no

suitable parametric formula is available. (We rectify this lack in Chapter 8 by using a B-spline curve to
form a smooth parametric curve based on a set of data points.)

a). b). c).

Figure 6.69*. A surface of revolution - the dome of the Taj Mahal.

To build a surface of revolution when the profile consists of discrete points, simplgsahej-th ver-
tex the slightly different form of Equation 6.41:

P, = (X cogu), X sin(u), Z)

Practice Exercises.

6.5.17. The generic shapes as surfaces of revoluti@escribe the profiles of the generic sphere, cylin-
der, and cone parametrically, and then express them as surfaces of revolution.

6.5.18. Rotation About Other AxesConsider a profile curv€(v) = (X(v), Z(v)), lying in thexzplane,
and an arbitrary axis through the origin given by unit vecct®¥e know from Equation 5.33 that the
matrix R (q) performs a rotation of a point througtradians about the axis

a). From this show that the surface of revolution formed by swe€gig@bout axig is

X(V)
0
Z(v)
1

(X(u,V), Y(uy, Zuyl)= R( M

b). Check this for the special case of rotation about the z-axis.

¢). Repeat part b for rotations about the x-axis, and about the y-axis.

6.5.19. Finding normal vectorsa). Apply Equation 6.40 to Equation 6.25 to derive the form in Equa-
tion 6.41 for the normal vector to a surface of revolution. b). Use this result to find theltoreach of

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 45



the generic sphere, cylinder, and cone, and show the results agree with those foundrirb Se8ti

Show that the normal vector to the torus has the form

n(u, v) = (coqv)codqu), coqv)sin(u), sin(v))(D + A cogqV)). Also, find the inside-outside function for the
torus, and compute the normal using its gradient.

6.5.20. An Elliptical Torus. Find the parametric representation for the following two surfaces of revo-
lution: a). The ellipse given by (cogv), b sin(v)) is first displaced units along thex-axis and then re-
volved about the-axis. b). The same ellipse is revolved aboutxtasis.

6.5.21. A “Lissajous of Revolution.” Sketch what the surface would look like if the Lissajous figure of
Equation 6.19 witiM = 2,N = 3, andf = 0 is rotated about theaxis.

6.5.22. Revolved n-gonsSketch the surface generated when a square having vertices (1, 0, 0), (0, 1, 0),
(-1,0,0), (0, -1, 0)is revolved about thaxis. Repeat for a pentagon and a hexagon.

6.5.8. The Quadric Surfaces.

An important family of surfaces, the quadric surfaces, are the 3D analogs of conic sections (&he ellips
parabola, and hyperbola, which we examined in Chapter 3. Some of the quadric surfaces have beautiful
shapes and can be put to good use in graphics.

The six quadric surfaces are illustrated in Figure 6.70.

1" Ed. Figure 9.12. the 6 quadric surfaces a),...f).

Figure 6.70. The six quadric surfaces: a. Ellipsoid, b. Hyperboloid of one sheetetbblpm of two
sheets, d. Elliptic cone, e. Elliptic paraboloid, f. Hyperbolic paraboloid.

We need only characterize the “generic” versions of these shapes, since we can obtain all the variations
of interest by scaling, rotating, and translating the generic shapes. For example, the ellipsaityis us
said to have the inside—outside function

F(x,y,z):g + X+ Z2 (6.43)

so that it extends irfrom -atoa, iny from b tob, and inz from - to c. This shape may be obtained
from the form of the generic sphere by scaling i,iy, andz by a, b, andc, respectively, as we describe
below. We can obtain rotated versions of the ellipsoid in a similar manner.

Figure 6.71 provides descriptions of the six generic quadric surfage®y goth their implicit and
parametric forms. We discuss some interesting properties of each shape later.

name of Inside- parametric form v-range,u-range
quadric outside func-
tion

ellipsoid X2+ y?+72-1 (cos¢)cost).cos()sin( ), (-p/2,p/2),¢ p,p
sin(v))

hyperboloid xX2+y?- 7- 1 (secl)cost ) ses( )si( ), (-p/2,p/2),¢ p,p

of one sheet tan@v))

hyperboloid x2- y>- 2 1 (sect)cost),ses( )tan( ), (-p/2,p/2)8

of two tan(\/))

sheets

elliptic cone XC+y?- 2 (vcos(u),vsinu),v) anyreal(- p,p)

8 The v-range for sheet #1 ip{2,p/2), and for sheet #2 ip/R,3p/2).

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 46



e”ipti)cl y XC+y2- z (vcos(u)y sin( )y? ) v3 0, p.p)
paraboloi

hyperbolic - X+ Y-z (vtanu)yv secq > ) V2 0. p.p)
paraboloid

Figure 6.71. Characterization of the six “generic” quadric surfaces.

Figure 6.64 also reports the parametric form for each of the generic quadric sutfascgtsaightforward
to check that each of these forms is consistent with its corresponding implicit form: substitute the para-
metric form for thex-, y-, andz components, and use trigonometric identities to obtain O.

Note that a change of sign in one term of the inside—outside function caxes3 # be changed to
sec ) and asin( ) to be changed tan( ) in the parametric forms. Bole€ ) andtan( ) grow without
bound as their arguments approgcl2, and so when drawingcontours ow-contours the relevant pa-
rameter is restricted to a smaller range.

Some Notes on the Quadric Surfaces.

We shall summarize briefly some significant properties of each quadric surface. One sudk pfaper
quadric is the nature of its tracestrAce is the curve formed when the surface is “cut” by a plane. All
traces of a quadric surface are conic sections - see the exercispantipal traces are the curves
generated when the cutting planes are aligned with the axes: the ptakigs= k, orx =k, wherek is
some constant.

In the discussion that follows we suppose that the generic surfaces have been seafedandz by
valuesa, b, andc, respectively, to make it easier to talk about the dimensions of the surfaces, and to dis-
tinguish cases where the surface is a surface of revolution or not.

* Ellipsoid. Compare the implicit form and parametric form for the ellipse in Chapter 3 to see how they
extend the 2D ellipse to this 3D ellipsoid. Paramedebs andc give the extent of the ellipsoid along

each axis. When two of the parameters are equal, the ellipsoid is a surface of revolwtion, (ifhat

is the axis of revolution?). Whem b, andc all are equal, the ellipsoid becomes a sphere. All traces of
the ellipsoid are ellipses.

* Hyperboloid of one sheetWhena = b, the hyperboloid becomes a surface of revolution formed by
rotating a hyperbola about an axis. The principal traces for the plarieare ellipses, and those for the
planesx = k andy = k are hyperbolas. The hyperboloid of one sheet is particularly interesting because it
is aruled surface, as suggested in Figure 6.72a. If a thread is woven between two parallel ellipses, as
shown, this surface will be created. Formulas for the rulings are discussed in the exercises.

[9.13 a). hyperboloid of one sheet b). hyperbolic paraboloid. |

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 47



Figure 6.72. Two ruled quadric surfaces.

* Hyperboloid of two sheets No part of the surface lies between -a andx =a. (Why?). Whera = b,
it becomes a surface of revolution. The traces for plareswhen k| >a are ellipses, and the other
principal traces are hyperbolas.

» Elliptic cone. The elliptic cone is a special case of the general cone treated earlier: Its generator lines
trace an ellipse. This cone is, of course, a ruled surface, and the principal traces far gtaaresellip-

ses. What are traces for planes that contaiz-theés? Whera = b, this quadric is a surface of revolu-

tion: It becomes a right circular cone.

* Elliptic paraboloid. The traces of an elliptic paraboloid for plazesk > 0 are ellipses, and the other
principal traces are parabolas. Wlen b, it is a surface of revolution.

* Hyperbolic paraboloid. The hyperbolic paraboloid is sometimes called a “saddle-shaped” surface.
The traces for planes= k (whenk t 0) are hyperbolas, and for planes k ory =k they are parabolas.
(What is the intersection of this surface with the plare0?) This is also a ruled surface (see Figure
6.65b).

Normal Vectors to Quadric Surfaces.

Because the implicit form for each quadric surface is quadrakicyirandz, taking the gradient to find

the normal presents no problem. Further, since each component of the gradient vector is linear in its own
variable or just a constant, it is straightforward to write the gradient in parametric fornuljsistute

X(u, v) for x, etc.

For instance, the gradient Bfx, y, 2) for the ellipsoid is

NF = (2x,2y,22)
and so the normal in parametric form is (after deleting the 2)
n(u, v) = (cos(v) cosf ),cosy )sing ),sin{ )) (6.44)

Normals for the other quadric surfaces follow just as easily, and so they need not be tabulated

| Practice exercises.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 48



6.5.23. The Hyperboloid is a Ruled SurfaceShow that the implicit form of a hyperboloid of one sheet
can be writtenX + z)(x - 2) =(1 -y)(1 +y). Show that therefore two families of straight lines lie in the
surface: the familyx - z= A(1 -y) and the familyA(x + z) = 1 +y, whereA is a constant. Sketch these
families for various values of A. Examine similar rulings in the hyperbolic paraboloid.

6.5.24. The hyperboloid of one sheeBhow that an alternative parametric form for the hyperboloid of
one sheet ip(u,v) =(cosiv) coqu), coshv) sin(u, sinh(v)).

6.5.25. Traces of Quadrics are Conicsonsider any three (noncollinear) points lying on a quadric sur-
face. They determine a plane that cuts through the quadric, forming the trace curve. Show that this curve
is always a parabola, ellipse, or hyperbola.

6.5.26. Finding Normals to the QuadricsFind the normal vector in parametric form for each of the six
quadric surfaces.

6.5.27. The Hyperboloid As a Ruled SurfaceSupposex, y,, 0) is a point on the hyperboloid of one
sheet. Show that the vecta{t) = (X, + Yt ¥ - %t D

describes a straight line that lies everywhere on the hyperboloid and passes thrgyg®) (Is this suf-
ficient to make the surface a ruled surface? Why or why not? [apostol p.329]

6.5.28. The Hyperbolic Paraboloid As a Ruled Surface&show that the intersection of any plane paral-
lel to the liney = +x cuts the hyperbolic paraboloid along a straight line.

6.5.9. The Superquadrics.

Following the work of Alan Barr [barr81], we can extend the quadric surfaces to a vagthyfimily,

in much the way we extended the ellipse to the superellipse in Chapter 3. This provides add#iona
esting surface shapes we can use as models in applications.

Barr defines four superquadric solids: the superellipsoid, superhyperboloid of one sheet, and superhyper-
boloid of two sheets, which together extend the first three quadric surfaces, and thercdpehich

extends the torus. The extensions introduce two “bulge factnes)tin, to which various terms are

raised. These bulge factors affect the surfaces mueliass for the superellipse. When both factors

equal 2, the first three superquadrics revert to the quadric surfaces catalogued previously. Example
shapes for the four superquadrics are shown in Figure 6.73.

1" Ed. Figure 9.15

Figure 6.73. Examples of the four superquadngcandn, are (left to right): 10, 2, 1.11, .77, and .514.
(Courtesy of Jay Greco.)

The inside-outside functions and parametric férare given in Figure 6.74.

name of quadric Implicit form parametric form v-range,u-range

superellipsoid 2“ +y" ”’7+ o1 (co$™ () cod™ @ ),cod™ \( )sit | ), [-p/2,p!2, p,p]
sin?™ ()

superhyperboloid | 2 4 y» "7 2.1 (sed™ ¢ )cod" ¢ ),set" W )sfil' u ), (-p/2,p12),[F p,pl

of one sheet tar?™ (v))

superhyperboloid | 20 . yo "7 4 (sec™ ¢)sed" ¢ ),sé¢" v( )t u( ), (-pl2,pl2)

of two sheets tar?™ )

supertoroid By T 0'Qr. 1 (@resmenced e+ st ). [-P,P)E P, P)
sin?™(v))

Figure 6.74. Characterization of the four superquadric surfaces.

9 Keep in mind that it's illegal to raise a negative value to a fractional exponent. So expressions such as
cog™(v) should be evaluated as cos(v)|co&V)pr the equivalent.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 49



These are “generic” superquadrics in the sense that they are centered at the origin, aligned with the coor-
dinate axes, and have unit dimensions. Like other shapes they may be scaled, rotated, ated &ansl
desired using the current transformation to prepare them properly for use in a scene.

The normal vecton(u, v) can be computed for each superquadric in the usual ways. We shall give only
the results here.

Normals to the superellipsoid and supertoroid.
The normal vectors for the superellipsoid and the supertoroid are the same:

n(u,v) = (co$ ?™ (v)cod ?" (1),cos?™ y )sih?"  ),sMm*™ | )) (6.45)

(How can they be the same? The two surfaces surely don't have the same shape.)

The Superhyperboloid of one sheet.

The normal vector to the superhyperboloid of one sheet is the same as that of the superellipsoid, except
all occurrences afogv) are replaced witeedv) and those a$in(v) are replaced wittan(v). Do not al-

ter coqu) or sin(u) or any other term.

The Superhyperboloid of two sheets.

For the superhyperboloid of two sheets, the trigopnometric functions irutaottlv are replaced. Replace
all occurrences afogqv) with sedv), those ofin(v) with tan(v), those oftoqu) with secu), and those of
sin(u) with tan(u).

Practice Exercises.

6.5.29. Extents of SuperquadricswWhat are the maximum y, andz values attainable for the superel-
lipsoid and the supertoroid?

6.5.30. Surfaces of revolutionDetermine the values of bulge factansndn for which each of the su-
perquadrics is a surface of revolution, and find the axis of revolution. Besamy other symmetries in
the surfaces.

6.5.31. Deriving the Normal VectorsDerive the formula for the normal vector to each superquadric.
surface.

6.5.10. Tubes Based on 3D Curves.

In Section 6.4.4 we studied tubes that were based on a “spine”Cftj\reeandering through 3D space.

A polygon was stationed at each of a selection of spine points, and oriented according to the Frenet
frame computed there. Then corresponding points on adjacent polygons were connected to form a flat-
faced tube along the spine.

Here we do the same thing, except we compute the normal to the surface at each vertex, so that smooth

shading can be performed. Figure 6.75 shows the example of a tube wrapped around a helical shape.
Compare this with Figure 6.47.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 50



Figure 6.75. A helical tube undulating through space.

If we wish to wrap a circlecbqu), sin(u), 0) about the spin€(t), the resulting surface has parametric
representation

P(u,v) = Q' +cos(uN (v)+ sin(uB (V) (6.46)

where the normal vectdt(t) and binormal vectoB(t) are those given in Equations 6.14 and 6.15. Now
we can build a mesh for this tube in the usual way, by taking sam®és, @), building the vertex,

normal, and face lists, etc. (What would be altered if we wrapped a cycloid - recall Figure 3.77 - about
the spine instead of a circle?)

6.5.11. Surfaces based on Explicit Functions of Two Variables.

Many surface shapes asmgle-valuedin one dimension, so their position can be represented as an ex-
plicit function of two of the independent variables. For instance, there may be a singlefvdeight”

of the surface above thx&plane for each poink{(z), as suggested in Figure 6.76. We can then say that
the height of the surface & @ is somef(x, z). Such a function is sometimes callebedght field
[bloomenthal97]. A height field is often given by a formula such as

Figure 6.76. A single-valued height field above xa@lane.
f(x,2)= e (6.47)

(wherea andb are given constants), or the circularly symmetsia¢’ function

f(x Z):sin(\/x2+zz)

(6.48)

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 51



Contrast this with surfaces such as the sphere, for which more than one wals@sgociated with each
point (x, 2). Single valued functions permit a simple parametric form:

P(u,v) = (u, f(u, v), V) (6.49)

and their normal vector i8(u,v) = (- 7f / ful; ff/ fV) (check this). That is) andv can be used
directly as the dependent variables for the function. Theentours lie in planes of constagtandv-
contours lie in planes of constamtFigure 6.77a shows a view of the example in Equation 6.47, and Fig-
ure 6.77b shows the function of Equation 6.48.

Figure 6.77. Two height fields. a) gaussiansicfunction. (files: fig6.77a.bmp, fig6.77b.bmp)

Each line is a trace of the surface cut by a plarek orz = k, for some value df. Plots such as these
can help illustrate the behavior of a mathematical function.

Practice exercise 6.5.32. The Quadrics as Explicit Functionghe elliptic paraboloid can be written as
z=1(x, y), so it has an alternate parametric fotnwv( f(u, v)). What isf()? In what ways is this alternate
parametric form useful? What other quadrics can be represented this way? Can any superquagrics be
resented explicitly this way?

6.6. Summary

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 52



This chapter is concerned with modeling and drawing a wide variety of surfaces of 3D objects. This involves
finding suitable mathematical descriptions for surface shapes, and creating efficient data sthadtures

hold sufficient detail about a surface to facilitate rendering of the surface. We developed the Mesh class,
whose data fields include three lists: the vertex, normal vector, and face lists. This data structure can effi-
ciently hold all relevant geometric data about a flat-faced object such as a polyhedron, and it can hold suffi-
cient data to model a polygonal “skin” that approximates other smoothly curved surfaces.

We showed that once a mesh data structure has been built, it is straightforward to render it irGine@pien
ronment. It is also easy to store a mesh in a file, and to read it back again into a program.

Modern shading algorithms use the normal vector at each vertex of each face to determine how light or dar
the different points within a face should be drawn. If the face should be drawn flat the same normal vector -
the normal vector to the face itself - is used for every vertex normal. If the mesh is designed ¢otrapres
underlying smoothly curved surface the normal vector at each vertex is set to the normal of the underlying
surface at that point, and rendering algorithms use a form of interpolation to produce gracefully varying shades
in the picture (as we discuss in Chapter 11). Thus the choice of what normal vectors tostoesh depends

on how the designer wishes the object to appear.

A wide variety of polyhedral shapes that occur in popular applications were exanmnidddchniques were
developed that build meshes for several polyhedral families. Here special care was takethéocnormal to
the face in each of the face’s vertex normals. We also studied large families of smoothly vasitsy obj
cluding the classical quadric surfaces, cylinders, and cones, and discussed how te toenglinéction of the
normal vector at each point by suitable derivatives of the parametric form for the surface.

The Case Studies in the next section elaborate on some of these ideas, and should not be skipped. Some of
them probe further into theory. A derivation of the Newell method to compute a normal vector is outlined, and
you are asked to fill in various details. The family of quadric surfaces is seen to have a unifying matrix form
that reveals its underlying structure, and a congenial method for transforming quadrics is de3thrdred.

Case Studies ask that you develop methods or applications to create and draw meshes feritheresting

classes of shapes described.

6.7. Case Studies.

6.7.1. Case Study 6.1. Meshes stored in Files.

(Level of Effort: 1l.) We want théMesh class to support writing dflesh objects to a file, and reading filed

mesh objects back into a program. We choose a simple format for such files. Thefiistd the number of
vertices, number of normals, and number of faces in the mesh. Then each vertex in the mesh is listed as a tri-
ple of floating point valuesx( y, z). Several vertices are listed on each line. Then each normal vector is

listed, also as a triple of floating point numbers. Finally, each face is listed, in the format:

number of vertices in this face
the list of indices in the vertex list for the vertices in this face
the list of indices in the normal list for the vertices in this face

For example, the simple barn of Figure 6.5 would be stored as:
1077

000 100 110 1150 010

001 101 111 1151 011

-100 -0.4770.8944 0 0.447 0.8944 0

100 0-10 001 00-1

4 0594 0000
4 3498 1111

4 2387 2222

4 1276 3333

4 0165 4444

5 56789 55555
5 04321 66666

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 53



Here the first face is a quadrilateral based on the vertices numbered 0,5,9,4, andwluefdasts are penta-
gons.

To read a mesh into a program from a file you might wish to use the code in Figure 6.78. Gmeanaefilit

opens and reads the file into an existing mesh object, and returns 0 if it can do this successfully. It returns non-
zero if an error occurs, such as when the named file cannot be found. (Additional testing should be done within
the method to catch formatting errors, such as a floating point number when an integer is expected.)

int Mesh:: readmesh(char * fileName)
{
fstream infile;
infile.open(fileName, ios::in);
if(infile.fail()) return -1; // error - can’t open file
if(infile.eof()) return -1; // error - empty file
infile >> numVerts >> numNorms >> numFaces;
pt = new Point3[numVerts];
norm = new Vector3[numNorms];
face = new Face[numFaces];
/lcheck that enough memory was found:
if( 'pt || 'norm || Iface)return -1; // out of memory
for(int p = 0; p < numVerts; p++) // read the vertices
infile >> pt[p].x >> pt[p].y >> pt[p].z;
for(int n = 0; n < numNorms; n++) // read the normals
infile >> norm[n].x >> norm[n].y >> norm[n].z;
for(int f = O; f < numFaces; f++)// read the faces

infile >> face[f].nVerts;
face[f].vert = new Vertexld[face[f].nVerts];
for(inti = 0; i < face[f].nVerts; i++)
infile >> face[f].vert[i].vertindex
>> face[f].vert[i].normindex;

return O; // success

}

Figure 6.78. Reading a mesh into memory from a file.

Because no knowledge of the required mesh size is available befokéerts , numNorms, andnumFaces
is read, the arrays that hold the vertices, normals, and faces are allocated dynamicglilpatwith the
proper sizes.

A number of files in this format are available on the internet site fbtiok. (They have the suffix .3vn)
Also, it is straightforward to convehtdexedFace objects in VRML2.0 files to this format.

It is equally straightforward to fashion the mettiaid Mesh:: writeMesh  (char * fileName ) that
writes a mesh object to a file.

Write an application that reads mesh objects from files and draws them, and also allows thevite a
mesh object to a file. As examples of simple files for getting started, arrange thaltb&tiap also can create
meshes for a tetrahedron and the simple barn.

6.7.2. Case Study 6.2. Derivation of the Newell Met hod.

(Level of Effort: Il). This study develops the thoery behindtfesvell methodfor computing the normal to a

polygon based on its vertices. The necessary mathematics are presented as needed as the discussion unfolds;
you are asked to show several of the intermediate results.

In these discussions we work with the polygonal faggven by theN 3D vertices:

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 54



P={P,P,..P} (6.50)

We want to show why the formulas in Equation 6.1 provide an exact computation of the normahvector
(m,, m, m,) to P whenP is planar, and a good direction to use as an “average” normalRvisaronplanar.

Derivation:
A). Figure 6.79 shows P projected (orthographically - along the principal axes) onto each of the principal
planes: thex= 0,y = 0, andz = 0 planes. Each projection is a 2D polygon. We first show that the components
of m are proportional to the areds, A, andA,, respectively, of these projected polygons.

Az

X//l l

Figure 6.79. Using projected areas to find the normal vector.

~

For simplicity consider the case whétés a triangle, as shown in Figure 6.80. Call,iand suppose its unit

normal vector is somen. Further, name aB’ its projection onto the plane with unit nornral We show that

the area ofT’, denotedAreaT’), is a certain fraction of the aré@aeaT) of T, and that the fraction is a sim-
ple dot product:

Area T = (mn) Ared T
Suppose triangl& has edges defined by the vectesndw as shown in the figure.

a). Show that the area Bfis Area(T) =2 |w * V|, and thav = w= 2Area T)m.

We now explore the projection @fonto the plane with normal vector

Figure 6.80. Effect of Orthographic projection on area.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 55



This projectionT is defined by the projected vectass andv’: its areaAred T ) = %|W “V|, so
v'"w'= 2Area T )n. We now calculatey’ andv’, and formArea(T).

b). Using ideas from Chapter 4, show that thptojects tos’ given by v’ = v - (v - n) n and similarly thatv’
=w- (w-n)n.

So we need only relate the sizes of the two cross products.

). Use the forms af’ andv’ to show that:v' = w'=v~ w-(w:-n)(v" n)+ - -n)(w” n)+ (w-n)(v-

n)(n”" n)
and explain why the last term vanishes. Thus we have
2AreaT)n=v" w-w:-n)(v"  n)+ - -n(w” n)

d). Dot both sides of this witth and show that the last two terms drop out, and that we havesdl”) = v~
w - n = 2AreaT) m - n as claimed.

e). Show that this result generalizes to the areas of any planar p&yguhits projected image.

f). Recalling that a dot product is proportional to the cosine of an angle, showrte{T") = AreaT) cosf
and state what the andlas.

g)- Show that the areds, A, A, defined above are simpkm, Km,, andkm, respectively, wher is some
constant. Hence the are@g Ay, andAz are in the same ratios a, my, andmyz.

B). So to findm we need only compute the vecta,(A, A), and normalize it to unit length. We now show
how to compute the area of the projectiofPaif Equation 6.50 onto they-plane directly from its vertices.
The other two projected areas follow similarly.

Each 3D verte®, = (x, Y, z ) projects onto they-plane a3/, = (x, y,). Figure 6.81 shows an example pro-
jected polygorP'.

Figure 6.81. Computing the area of a polygon.
Each edge oP’ defines a trapezoidal region lying between it andkthgis.

h). Show that the area of such a trapezoid is the width of the base times the midpoint of the edge. For instance
the area? in the figure isA, = 0.5, - X))(y, +y). This quantity is negative i, lies to the left ok, and is
positive otherwise.

We use this same form for each edge. Foi-theedge define

1
Ai = E()ﬂ - Xnext(i))(yi'l' Ynext i))

wherenex{i) is 0 ifi is equal tdN-1, and is+1 otherwise.

i). Show that if two adjacent edges of the polygon are collinear (which would make a cross product based on
them zero), the areas contributed by these edges is still properly accounted for.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 56



j)- Show that the sum of th& properly adds the positive and negative contributions of area to form a resultant
sum that is either the area of the polygon, or its negative.

Now we ask which of the two basic directions doepoint in? That is, if you circle the fingers of your right
hand around the vertices of the polygon moving fRyto P,, to P, etc., the direction of the arrow in Figure

6.82, doesn point along your thumb or in the opposite direction?
z

fe

P.
2 Po
y

X

Figure 6.82. The direction of the normal found by the Newell method.

j)- Show thaim doespoint as shown in Figure 6.82. Thus for a mesh that has a well-defined inside-outside, we
can say than is the outward pointing normal if the vertices are labeled CCW as seen from the outside.

6.7.3. Case Study 6.3. The Prism.
(Level of Effort: 1ll) Write an application that allows the user to specify the polyduae# of a prism using
the mouse. It then creates the vertex, normal, and face lists for the prism, and displays it.

Figure 6.83a shows the user's “drawing area”, a square presented on the screen. Thedwsen agequence
of points in this square with the mouse, terminating the process with a right click.

a). b).
" N

\ > /
Figure 6.83. Designing and building a prism mesh.

In 3D space the corresponding square is considered to be a unit square lying/#pléme as suggested in

Figure 6.83b, and the base of the prism lies within it. This establishes tla# gizebase in the 3D “world”.

The prism is considered to be the base polygon after it is swept one unit in the directionaish&xercise

the program on several prisms input by the user. See if your implementation of OpenGL properly draws non-
convex base polygons.

6.7.4. Case Study 6.4. Prism Arrays and Extruded Quad-strips.
(Level of Effort: 1ll) Write the two methods described in Section 6.4.2:

void Mesh:: makePrismArray(<... suitable arguments ..>);
void Mesh:: makeExtrudedQuadStrip(Point2 p[], int numPts, Vector3 d);

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 57



that create meshes for an array of prisms, and for an extruded quad-strip.

a). Arrays of prisms: Choose an appropriate data type to represent an array of prisms. NatekaBtis-
mArray () is similar to the method that makes a mesh for a single prism. Exercise the first method on at least
the two block letters with the shapes ‘K’ and ‘W’. (Try ‘D’ also if you wish.)

b). Extruded quad-strips used to form tubes The process of building the vertex, normal, and face lists of a

mesh is really a matter of keeping straight the many indices for these arrays. To assist in dethédopin
method, consider a quad-strip base polygon described as in Equation 6.9 by the vertices

quad-strip = f,, P, s Pyt

wherep, = (X, y,, 0) lies in thexy-plane, as shown in Figure 6.84a. When extruded, each successive pair of
vertices forms a “waist” of the tube, as shown in Figure 6.84b. Thereuare M/2 - 1 segments in the tube.

a). quad-strip in xy-plane b) the four extruded segments

Figure 6.84. Building a mesh from a quad-strip base polygon.

The 0-th waist consists of verticgsp,, p, + d, andp, + d, whered is the extrusion vector. We add vertices to
the vertex list as followspt [4i ] =p,, pt [4i+1 ]=p,.,pt[4i+2 ]=p,,+d andpt[4i+3 ]=p, +d,
fori =0, ...,numas suggested in Figure 6.84b.

Now for the face list. We first add all of the “outside walls” of each segment of the tube, and thentappend
“end walls” (i.e. the first end wall uses vertices of the first waist). Each ofuimsegments has four walls.

For each wall we list the four vertices in CCW order as seen from the outside. There are pattervarious
indices encountered, but they are complicated. Check that the following vertex indices are correct for each of
the four walls of thé-th segment: Theth wall of thek-th segment has vertices with indicgsi,, i,, andi,,

where:

iy = ki
i,=i,+4
i,=4kk+(+3)%4
i,=i3 + 4,

fork=0, 1, ..,numandj =0, 1, 2, 3.
What are indices of the two end faces of the tube?

Each face has a normal vector determined by the Newell method, which is straightforward to calculate at the
same time the vertex indices are placed in the face list. All vertex normals of a face use the same normal vec-
tor: face [L].normindex ={L,L,L,L }, for eachL.

Exercise thenakeExtrudedQuadStrip () method by modeling and drawing some arches, such as the one
shown in Figure 6.39, as well as some block letters that permit the use of quad-strips for their base polygon.

6.7.5. Case Study 6.5. Tubes and Snakes based on a Parametric Curve.
(Level of Effort 11l) Write and test a method

void Mesh:: makeTube(Point2 P[], int numPts, float t[], int numTimes)
that builds a flat-faced mesh based on wrapping the polygon with ve®jdes ..., P, , about the spine curve
C(t). The waists of the tube are formed on the spine at the set of irtstgnts,t,,, , and a Frenet frame is

constructed at eaddt). The functionC(t) is “hard-wired” into the method as a formula, and its derivatives
are formed numerically.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 58



Experiment with the method by wrapping polygons taken from Example 3.6.3 that involve a line jumping back
and forth between two concentric circles. Try at least the helix and a Lissajous figure as example spine curves

6.7.6. Case Study 6.6. Building Discrete-Stepped Surfaces of Revolution.

(Level of Effort: 1ll) Write an application that allows the user to specify the “lefofif an object with the
mouse, as in Figure 6.85. It then creates the mesh for the surface of revolution, and itigfiaysrogram
also writes the mesh data to a file in the format described in Case Study 6.1.

Figure 6.85a shows the user's “drawing area”, a square presented on the screen. Thedwsen agequence
of points in this square with the mouse.

Figure 6.85. Designing a profile for a surface of revolution.

In 3D space the corresponding square is considered to be a unit square lying/ipléme. This establishes
the size of the profile in the 3D “world”. The surface of revolution is formed by sweeping the profile about the
z-axis, in a user-defined number of steps.

Exercise the program on several surfaces of revolution input by the user.

6.7.7. Case Study 6.7. On Edge Lists and Wireframe Models.

(Level of Effort: 1) A wireframe version of a mesh can be drawn by drawing a line for each edge of the mesh.
Write a routinevoid Mesh:: drawEdges(void) that does this for any given mesh. It simply traverses
each face, connecting adjacent vertices with a line. This draws each line twice. (Why?)

In some time critical situations this inefficiency might be intolerable. In such a casigatistcan be built

for the mesh which contains each edge of the mesh only once. An edge list is an array of indeReyairs

the two indices indicate the two endpoints of each edge. Describe an algorithm that builds an edge list for any
mesh. It traverses each face of the mesh, noting each edge as it is found, but adding it only if that edge is not
already on the list.

Note that it is usually impossible to build a face list from an edge list and a vertex list. Figure 6.86h&how
classic example. From an edge list alone there is no way to tell where the faces are: Even a wireframe model for a
cube could be a closed box or an open one. A face list has more information, therefore, than does an edge list.

Figure 6.86. An ambiguous object.

6.7.8. Case Study 6.8. Vaulted Ce ilings.

(Level of Effort: Ill) Many classic buildings have arched ceilings or roofs shapedadtaFigure 6.87a shows a

“domical vault” [fleming66] built on a square base. Four “webs”, each a ruled surface, rise in a circular sweep to meet
at the peak. The arch shape is based on an ogee arch, as described in Figure 3.88 wRaat doshical vault built on

an octagon, having eight webs. This arch shape is based on the pointed arch described in Figure & .87Tunétiin

that creates a mesh model for a domical vault built on a cube, and on a octagon.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 59



Figure 6.87. Examples of vaulted ceilings.

6.7.9. Case study 6.9. On Platonic Solids.
(Level of Effort: Il) Create files (in the format described in Case Study 6.1) for each of the Platonic solids.
Experiment by reading in each file into an application and drawing the associated object.

6.7.10. Case Study 6.10. On Archimedian solids
(Level of Effort: 1) Pictures of the 13 Archimedian solids may be found in many sources (e.g. [kappraff91],
[wenninger71]). Each can be formed by truncating one of the Platonic solids as describeidmeSaat

Create files (in the format described in Case Study 6.1) for each of the following polyhedra:

a). the Buckyball;

b). the truncated cube;

c). the cuboctahedron. (The cube is truncated: new vertices are formed from the midpoints of each of its
edges).

Test your files by reading each object into an application and drawing it.

6.7.11. Case Study 6.11. Algebraic form for the Quadric Surfaces.

(Level of Effort: 1) The implicit forms for the quadric surfaces share a compact and useful faunooas
a matrix. For example, the implicit forR(x, y, 2) of the generic sphere is given in Figure 6.64 asy’

+ 7 -1. By inspection this can be written as thmdratic form:

1 00 0 x
010 0y (6.51)
F(x,y,2= A '
(xy2=(x %2 o o o
0 0O0-11

or more compactly, using the homogeneous representation of poing)(given byP™ = (x, y, z, 1):
F(%,¥,2= P Riee P (6.52)

whereR_,..is the 4 by 4 matrix displayed in Equation 6.51. The paint, @) is on the ellipsoid when-

ever this function evaluates to 0. The implicit forms for the other quadric surfaces all have the same
form; only the matrixR is different. For instance, the matrices for the hyperboloid of two sheets and the
elliptic paraboloid are given by:

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 60



Rnyperboloidz (6'53)

o o o R
o o r O
o o o
Oy O O

N|

a). What the are matrices for the remaining three shapes?

Transforming quadric Surfaces.

Recall from Section 6.5.3 that when an affine transformation with ndtisxapplied to a surface with
implicit function F(P), the transformed surface has implicit functiiv™P).

b). Show that when a quadric surface is transformed, its implicit function becomes:
G(P)=(M*P)" R M* B which is easily manipulated (as in Appendix 2) into the form

G(P) = PT( M T RM 1) P

Thus the transformed surfaisealso a quadric surfaceith a different defining matrix. This matrix de-
pends both on the original shape of the quadric and on the transformation.

For example, to convert the generic sphere into an ellipsoid that extendaftomin x, -b tob iny,
and € tocin z use the scaling matrix:

a 0o0o@o0
O b 0O
M=
0 0c O
0 0 01
c). Find M' and show that the matrix for the ellipsoid is:
iz 0O 0 O
a
1
MTRMi= 0 5 00
0 0 iz 0
Cc
O 0O 0 1

and write the ellipsoid’s implicit form.

d). Find the defining matrix for an elliptic cone that has been scaled by 2xrdilection, by 3 in the
y-direction, and then rotated through adout the y-axis.

e). Show that the matriR in the implicit functionF(P)=P'RP for a quadric surface can always be taken
to be symmetric. (Hint: writ® as the sum of a symmetric and an antisymmetric part, and show that the
antisymmetric part has no effect on the surface shape.

6.7.12. Case Study 6.12. Superquadric Scenes.
(Level of Effort: 1ll) Write an application that can create generic superquadrics witseleeted bulge
factors, and which place several of them in the scene at different sizes and orientations.

6.7.13. Case Study 6.13. Drawing Smooth Parametric Surfaces.

(Level of Effort 1) Develop a function that creates a mesh model of any well-behaved smooth surface given
by P(u, v) = (X(u, v), Y(u, v), Z(u, v)). It “samples” the surface aumValuesU uniformly spaced values in
betweeruMin anduMax, and ainumValuesV values inv betweervMin andvMax. The functions X(), Y(),
and Z(), as well as the normal component functions nx(), ny(), and nz(), are “hard-wired into the fbutin

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 61



builds the vertex list and normal list based on these sample values, and creates a face list consistig of quad
laterals. The only difficult part is keeping straight the indices of the vertices for each face in thea.fabe lis
suggested skeleton shown in Figure 6.86 may prove helpful.

Apply this function to building an interesting surface of revolution, and a height field

void Mesh:: makeSurfaceMesh()
{
inti, j, numValsU = numValsV = 40;// set these
double u, v, uMin = vMin = -10.0, uMax = vMax = 10.0;
double delU = (uMax - uMin)/(numValsU - 1);
double delV = (vMax - vMin)/(numValsV - 1);

numVerts = numValsU * numValsV + 1; // total # of vertices
numFaces = (numValsU -1) * (numValsV - 1) ; // # of faces
numNorms = numVerts; // for smooth shading — one normal per vertex
pt =new Point3[numVerts]; assert(pt !'= NULL); // make space

face = new Face[numFaces]; assert(face != NULL);

norm = new Vector3[numNorms]; assert(norm != NULL);

for(i = 0, u = uMin; i < numValsU; i++, u += delU)
for(j = 0, v = VvMin; j < numValsV; j++, v += delV)

int whichVert =i * numValsV + j; //index of the vertex and normal
/I set this vertex: use functions X, Y, and Z
pt[whichVert].set(X(u, v),Y(u, v),Z(u, v));

/l set the normal at this vertex: use functions nx, ny, nz
norm[whichVert].set(nx(u, v), ny(u, v), nz(u, v));
normalize(norm[whichVert]);

/l make quadrilateral

if(i > 0 && j > 0) // when to compute next face

int whichFace =(i - 1) * (humValsV - 1) + (j - 1);
face[whichFace].vert = new VertexID[4];
assert(face[whichFace].vert '= NULL);
face[whichFace].nVerts = 4;

face[whichFace].vert[0].vertindex = // same as norm index
face[whichFace].vert[0].normIndex = whichVert;
face[whichFace].vert[1].vertindex =
face[whichFace].vert[1].normIndex = whichVert - 1;
face[whichFace].vert[2].vertindex =
face[whichFace].vert[2].normIndex = whichVert - numValsV - 1;
face[whichFace].vert[3].vertindex =
face[whichFace].vert[3].normIndex = whichVert - numValsV;

}

}
}

Figure 6.88. Skeleton of a mesh creation routine for a smooth surface.

6.7.14. Case Study 11.14. Taper, Twist, Bend, and Squash it.

(Level of Effort I} It is useful to have a method fdeforming a 3D object in a controlled way. For in-
stance, in an animation a bouncing rubber ball is seen to deform into a squished vetsias e floor,

then to regain its spherical shape as it bounces up again. Or a mound of jello bends asd evigglag
waves in the breeze. In cases like these it is important to have the deformations look natural, following
rules of physics that take into account conservation of mass, elasticity, and tRdhyikieally-based
modeling, that attempts to mirror how actual objects behave under various forces is a large antihigscina
subject, described in many books and articles as in [watt92,bloomenthal97].

You can also produce purely geometrical deformations [barr84], chosen by the designer for their visual
effect. For instance, it is straightforwardtéper an object along an axis, as suggested in Figure 6.89.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 62



Figure 6.89. The pawn before and after tapering.

This is achieved by scaling all points in thandy dimensions by amounts that vary wittaccording to
some profile function, sag(2). This defines a (non-affine) transformation that can be written as a scaling
matrix

g 0O O
M= 0 g(2 O (6.54)
0 0 1

If the undeformed surface has parametric representafionv) = (X(u, v), Y(u, v), Z(u, v)) then this de-
formation converts it to

P'(u, v) = (X(u, v)g(Z(u, v)), Y(u, v) g(Z(u, v)), Z(u, v)) (6.55)

For Figure 6.89, the mesh for the pawn was first created, and then each meshwvgrggxvés altered
to (xF, yF, 2), whereF is 1 - 0.04 * £ + 6) (note: the pawn extends from 0 to -12 in z).

Another useful deformation tsvisting. To twist about the-axis, for instance, rotate all points on the
object about the-axis by an angle that dependszpusing the matrix

cos@(z)) sin(@(z)) O
M = -sin(g(z)) cos(g(z)) O (6.56)
0 0 1

Figure 6.90 shows the pawn after a linearly increasing twist is applied. The pawn is a surfacki-of rev
tion about thez-axis, so it doesn’'t make much sense to twist it about-thés. Instead the twist here is

about they-axis, withg(2) = 0.02p| z+ 6.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 63



Figure 6.90. The pawn after twisting.

Apply these deformations to several mesh models, including the torus. (Note that yowsannot
OpenGL’s modelview matrix to perform this deformation, since the transformation hetegiffime.
The vertices in the actual vertex list must be transformed. Bending is another dieiotneated by
Barr. Refer to his paper [barr84], and experiment with the bending deformation as well.

6.8. For Further Reading

A number of books are available that treat the definition and generation of surfaces and solids. Rogers and
Adams MATHEMATICAL ELEMENTS FOR COMPUTER GRAPHICS [rogers90] provideslear intro-

duction to curves and surfaces, as does Faux and Pratt's COMPONALIGEOMETRY FOR DESIGN

AND MANUFACTURE [Faux79]. Gray's MODERN DIFFERENTIAL GEOMETRY OF CURVES AND
SURFACES WITH MATHEMATICA [gray93] offers a rigorous mathematical treatment of curvelafate
shapes, and provides code in Mathematica for drawing them. Mortenson’s GEOMETRIELMEID
[mortenson85] also provides an excellent discussion of solid modeling used in the CAD industry.

Hill - ECE660:Computer Graphics Chapter 6 10/23/99 page 64



(for ECE660, Fall, 1999)

CHAPTER 7 Three-Dimensional Viewing

| am a camera with its shutter open, quite passive, recording, not thinking.
Christopher Isherwood, A Berlin Diary

Goals of the Chapter

* To develop tools for creating and manipulating a “camera” that produces pictures of a 3D scene.
» To see how to “fly” a camera through a scene interactively, and to make animations.

« To learn the mathematics that describe various kinds of projections.

» To see how each operation in the OpenGL graphics pipeline operates, and why it is used.

* To build a powerful clipping algorithm for 3D objects.

 To devise a means for producing stereo views of objects.

Preview

Section 7.1 provides an overview of the additional tools that are needed to build an applicatiosm dahat let
camera “fly” through a scene. Section 7.2 defines a camera that produces perspectjandehews

how to make such a camera using OpenGL. It introduces aviation terminology that helps to dessribe w
to manipulate a camera. It develops some of the mathematics needed to describe a camera’s orientation
through a matrix. Section 7.3 develops the Camera class to encapsulate information abowd,andmer
develops methods that create and adjust a camera in an application.

Section 7.4 examines the geometric nature of perspective projections, and develepsatizdhtools to
describe perspective. It shows how to incorporate perspective projections in the guiggins, and
describes how OpenGL does it. An additional property of homogeneous coordinates is introduced to
facilitate this. The section also develops a powerful clipping algorithm that operates in homogeneous
coordinate space, and shows how its efficiency is a result of proper transformations appiatsto

before clipping begins. Code for the clipper is given for those programmers who wish to develop their
own graphics pipeline.

Section 7.5 shows how to produce stereo views of a scene in order to make them more intelligible.
Section 7.6 develops a taxonomy of the many kinds of projections used in art, architecture, and
engineering, and shows how to produce each kind of projection in a program. The chapterittiases w
number of Case Studies for developing applications that test the techniques discussed.

7.1 Introduction.

We are already in a position to create pictures of elaborate 3D objects. As we saw in Chapter 5, OpenGL
provides tools for establishing a camera in the scene, for projecting the scene onto the camera’s
viewplane, and for rendering the projection in the viewport. So far our camera only produces parallel
projections. In Chapter 6 we described several classes of interesting 3D shapeshkaissd to model

the objects we want in a scene, and througiMeésh class we have ways of drawing any of them with
appropriate shading.

So what'’s left to do? For greater realism we want to create and control a camera that produces
perspective projections. We also need ways to take more control of the cametaia paosi orientation,
so that the user can “fly” the camera through the scene in an animitienmequires developing more
controls than OpenGL provides. We also need to achieve precise control over the camerafumey v
which is determined in the perspective case as it was when forming parallel projections: by a certain
matrix. This requires a deeper use of homogeneous coordinates than we have used se tevsop

the mathematics of perspective projections from the beginning, and see how theprarated in the
OpenGL graphics pipeline. We also describe how clipping is done against the camera’s wieg; vol
which again requires some detailed working with homogeneous coordinates. So we fenhthyvseis

all done, from start to finish! This also provides the underlying theory for those programmers who must
develop 3D graphics software without the benefit of OpenGL.

7.2. The Camera Revisited.
It adds a precious seeing to the eye.

Chapter 3D viewing November 23, 1999 page 1



William Shakespeare, Love's Labours Lost

In Chapter 5 we used a camera that produces parallel projections. Its view volume i< bepigoed

bounded by six walls, including a near plane and a far plane. OpenGL also supports a camergethat crea
perspective views of 3D scenes. It is similar in many ways to the camera used before, except that its view
volume has a different shape.

Figure 7.1 shows its general form. It hasege positioned at some point in space, andiigsv volumeis

a portion of a rectangular pyramid, whose apex is at the eye. The opening of the pyranbyg theset
viewangleq (see part b of the figure). Two planes are defined perpendicular to the axis of the pyramid:
thenear planeand thefar plane. Where these planes intersect the pyramid they form rectangular
windows. The windows have a certaspect ratig which can be set in a program. OpenGL clips off any
parts of the scene that lie outside the view volume. Points lying inside the view volume aeg@roje

onto theview plane to a corresponding poit as suggested in part c. (We shall see that it doesn’t
matter which plane one uses as the view plane, so for now take it to be the near plane.) With a
perspective projection the poiRtis determined by finding where a line from the ey®tmtersects the
view plane. (Contrast this with how a parallel projection operates.)

a). b). c).

Figure 7.1. A camera to produce perspective views of a scene.

Finally, the image formed on the view plane is mapped into the viewport as shown in part ¢, and becomes
visible on the display device.

7.2.1. Setting the View Volume.
Figure 7.2 shows the camera in its default position, with the eye at the origin and the axis of the pyramid
aligned with thez-axis. The eye is “looking” down the negatzaxis.

Figure 7.2. the camera in its default position.

OpenGL provides a simple way to set the view volume in a program. Recall that the shape of the
camera’s view volume is encoded in fhrejection matrix that appears in the graphics pipeline. The
projection matrix is set up using the functiginPerspective () with four parameters. The sequence
to use is:

gIMatrixMode(GL_PROJECTION); // make the projection matrix current

glLoadldentity(); /I start with a unit matrix
gluPerspective(viewAngle, aspectRatio, N, F); // load the appropriate
values

The parameteviewAngle , shown ag in the figure, is given in degrees, and sets the angle between the
top and bottom walls of the pyramispectRatio  sets the aspect ratio of any window parallel to the
xy-plane. The valudl is the distance from the eye to the near planefasdhe distance from the eye to
the far planeN andF should be positive. For examptguPerspective(60.0, 1.5, 0.3,

50.0) establishes the view volume to have a vertical opening°pfvéh a window that has an aspect

Chapter 3D viewing November 23, 1999 page 2



ratio of 1.5. The near plane lieszat -0.3 and the far plane liesat -50.0. We see later exactly what
values this function places in the projection matrix.

7.2.2. Positioning and pointing the camera.

In order to obtain the desired view of a scene, we move the camera away from its defauft glositn

in Figure 7.2, and aim it in a particular direction. We do this by performing a rotation and a translation,
and these transformations become part ohtbdelview matrix, as we discussed in Section 5.6.

We set up the camera’s position and orientatioexictlythe same way as we did for the parallel-
projection camera. (The only difference between a parallel- and perspective-projectéra casides in
the projection matrix, which determines #tepeof the view volume.) The simplest function to use is
againgluLookAt (), using the sequence

gIMatrixMode(GL_MODELVIEW); // make the modelview matrix current

glLoadldentity(); /I start with a unit matrix
gluLookAt(eye.x, eye.y, eye.z, look.x, look.y, look.z, up.x, up.y,
up.z);

As before this moves the camera so its eye resides atgyeintand it looks towards the point of interest

look . The “upward” direction is generally suggested by the vegiomhich is most often set simply to

(0, 1, 0). We took these parameters and the whole process of setting the camera pretty much for granted
in Chapter 5. In this chapter we will probe deeper, both to see how it is done and to take finer control
over setting the camera. We also develop tools to meégve changes to the camera’s direction, such

as rotating it slightly to the left, tilting it up, or sliding it forward.

The General camera with arbitrary orientation and position.

A camera can have any position in the scene, and any orientation. Imagine a transformatioksthat pi

the camera of Figure 7.2 and moves it somewhere in space, then rotates it around to aim it as desired. We
need a way to describe this precisely, and to determine what the resulting modelview matrix will be.

It will serve us well to attach an explicit coordinate system to the camera, as suggested by Figure 7.3.
This coordinate system has its origin at the eye, and has three axes, usually catied,thadn- axes,

that define its orientation. The axes are pointed in directions given by the wgctpesdn as shown in

the figure. Because the camera by default looks down the negatw® we say in general that the
camera looks down the negativexis, in the directionn. The directioru points off “to the right of”

the camera, and directianpoints “upward”. Think of the-, v-, andn-axes as “clones” of the,y-, and
z-axes of Figure 7.2, that are moved and rotated as we move the camera into position.

Figure 7.3. Attaching a coordinate system to the camera.

Position is easy to describe, but orientation is difficult. It helps to specify di@ntesing the flying
termspitch, heading yaw, androll, as suggested in Figure 7.4. Tgitch of a plane is the angle that its
longitudinal axis (running from tail to nose and having directijrmakes with the horizontal plane. A
planerolls by rotating about this longitudinakis; itsroll is the amount of this rotation relative to the
horizontal. A plane’fieadingis the direction in which it is headed. (Other termsaaimuthand

bearing) To find the heading and pitch givansimply expressn-in spherical coordinates, as shown in
Figure 7.5. (See Appendix 2 for a review of spherical coordinates.) The uwettas fongitude and
latitude given by angles andf, respectively. The heading of a plane is given by the longitude ahd
the pitch is given by the latitude af.-Formulas for roll, pitch, and heading in terms of the veat@sd

n are developed in the exercises.

Chapter 3D viewing November 23, 1999 page 3



al pth

Figure 7.4. A plane’s orientation relative to the “world”.

Figure 7.5. The heading and pitch of a plane.

Pitch androll are both nouns and verbs: when used as verbs they describe a change in the plane’s
orientation. You can say a plane “pitches up” when it increases its pitch (rotates ab@xisis and
that it “rolls” when it rotates about itsaxis. The common term for changing headingas: to yaw left
or right it rotates about itsaxis.

These terms can be used with a camera as well. Figure 7.6a shows a camera with the same coordinate
system attached: it hasv, andn- axes, and its origin is at positieje The camera in part b has some
non-zero roll, whereas the one in part ¢ has zero roll. We most often set a camgeazierdiaoll, and

call it a “no-roll” camera. Thas-axis of a no-roll camera is horizontal: that is, perpendicular tyg-thés

of the world. Note that a no-roll camera can still have an arbitrdiyection, so it can have any pitch or
heading.

How do we control the roll, pitch, and heading of a camgha?0kAt () is handy for setting up an

initial camera, since we usually have a good idea of how to cleyessdlook. But it's harder to

visualize how to choosap to obtain a certain roll, and it's hard to make later relative adjustments to the
camera using onlgluLookAt (). (gluLookAt () works with Cartesian coordinates, whereas orientation
deals with angles and rotations about axes.) OpenGL doesn't give direct access o ameln

directions, so we’ll maintain them ourselves in a program. This will make it much easier to describe and
adjust the camera.

a). Camera orientation b). with roll c). no- oll

v

\Y

|—|/-' —

Figure 7.6. Various camera orientations.

What gluLookAt () does: some mathematical underpinnings.
What then are the directionsv, andn when we executgluLookAt () with given values foeye look,
andup? Let’s see exactly whaluLookAt () does, and why it does it.

As shown in Figure 7.7a, we are given the locatioresyeindlook, and theup direction. We

immediately know thah must be parallel to the vecteye- look, as shown in Figure 7.7b, so we set
n = eye- look. (We'll normalize this and the other vectors later as necessary.)

Chapter 3D viewing November 23, 1999 page 4



Figure 7.7. Building the vectors v, andn.

We now need to find andv that are perpendicular toand to each other. Thedirection points “off to
the side” of a camera, so it is (fairly) natural to make it perpendiculgs, tehich the user has saglthe
“upward” direction. This is the assumptigluLookAt () makes in any case, and so the direction
made perpendicular toandup. An excellent way to build a vector that is perpendicular to two given
vectors is to form their cross product, so welset UP ~ N. (The user should not choosegm

direction that is parallel to, as theru would have zero length - why?) We chodse up = n rather
thann ™ up so thatu will point “to the right” as we look alongi-

With u andn in hand it is easy to form it must be perpendicular to bathandv so use a cross product
again:v =n" U. Notice thatv will usually not be aligned withp: v must be aimed perpendicularrtp
whereas the user providep as a suggestion of “upwardness”, and the only property of it that is used is
its cross product with.

Summarizing: giveneye look, andup, we form

n =eye- look

u=up’' n (7.1)
v=n_u

and then normalize all three to unit length.

Note how this plays out for the common case whgre (0,1,0). Convince yourself that in this case
(n, 0, n) andv = (-nn, n’+n/, -nn). Notice thats does indeed haveyacomponent of 0, so it is
“horizontal”. Furthery has a positivg-component, so it is pointed more or less “upward”.

Example 7.2.1. Find the camera coordinate systerConsider a camera wittye= (4, 4, 4) that “looks
down” on a look-at poinibok = (0, 1, 0). Further suppose that is initially set to (0, 1, 0). Find, v,

andn. Repeat for up = (2, 1, 0).

Solution: From Equation 7.1 we findt = (4, 0, -4) v = (-12, 32, -12) n = (4, 3, 4), which are easily
normalized to unit length. (Sketch this situation.) Note thiatindeed horizontal. Check that these are
mutually perpendicular. For the case of up = (2, 1, 0) (try to visualize this camerawefkirey out the
arithmetic),u = (4, -8, 2),v = (38, 8, -44), and = (4, 3, 4). Sketch this situation. Check that these
vectors are mutually perpendicular.

Example 7.2.2. Building intuition with cameras.To assist in developing geometric intuition when
setting up a camera, Figure 7.8 shows two example cameras - each depicted as a coordinate system with a
view volume - positioned above the world coordinate system, which is made more visible turagsids

in thexzplane. The view volume of both cameras has an aspect ratio of 2. One camera isesgt=with
(-2, 2, 0),look = (0,0,0), andip = (0,1,0). For this camera we find from Equation 7.1 that(-2, 2, 0),u
=(0,0,2), andr = (4, 4, 0). The figure shows these vectors(drawn the darkest) as well as the

vector. The second camera usge= (2,2,0),look = (0,0,0), andip = (0,0,1). In this case = (-2, -2, 0)
andv = (0, 0, 8). The direction is parallel taup here. Note that this camera appears to be “on its side”:
(Check that all of these vectors appear drawn in the proper directions.)

Chapter 3D viewing November 23, 1999 page 5



Figure 7.8. Two example settings of the camera.

Finally, we want to see what valugisiLookAt () places in the modelview matrix. From Chapter 5 we

know that the modelview matrix is the product of two matrices, the mattat accounts for the
transformation of world points into camera coordinates, and the nhattiat embodies all of the

modeling transformations applied to poirdkiLookAt () builds theV matrix and postmultiplies the

current matrix by it. Because the job of Menatrix is to convert world coordinates to camera

coordinates, it must transform the camera’s coordinate system into the generic position for the camera as
shown in Figure 7.9. This means it must transfegminto the originu into the vector, v into j, andn

into k. There are several ways to derive wiahust be, but it's easiest to check that the following

matrix does the trick:

Figure 7.9. The transformation whighuLookAt () sets up.

u, u, u, d
v, Vv, v, d
v= * 7 = dy (7.2)
n, n n d,
0O 0 0 1

where(d,,d,, d,) = (- eyeu,- eyev,- eye). Check thatin fact

eye
v Yoo
eye
1

R O O O

1 A technicality: since it's not legal to dot a point and a ve@peshould be replaced here by the vector
(eye- (0,0,0)).

Chapter 3D viewing November 23, 1999 page 6



as desired, where we have extended popeto homogeneous coordinates. Also check that
u 1

X

v o=
uZ

0
0
0 0
and thatv mapsv into (0,1,0,0) and maps into (0,0,1,0). The matrixV is created bygluLookAt ()
and is postmultiplied with the current matrix. We will have occasion to do this same operation later when
we maintain our own camera in a program.

Practice Exercises.

7.2.1. Finding roll, pitch, and heading given vectors u, v, and 1Suppose a camera is based on a
coordinate system with axes in the directians, andn, all unit vectors. The heading and pitch of the
camera is found by representingin spherical coordinates. Using Appendix 2, show that

heading=arctan¢ n; )
pitch=sin"* (- n,)

Further, the roll of the camera is the anglaiitsxis makes with the horizontal. To find it, construct a
vectorb that is horizontal and lies in the-plane. Show thald = ] * N has these properties. Show that

the angle betweelm andu is given by

4, u.n, - u,n
roll =cos* 22X

n-+n,
7.2.2. Using up sets v to a “best approximation” to ugshow that usingip as in Equation 7.1 to sat
andv is equivalent to making the closest vector tap that is perpendicular to vector Use these steps:
a). Showthav =n” (up” n);
b). Use a property of the “triple vector product”, that says(b” cF (& c)b- (& b)c
c). Show thav is therefore the projection ap onto the plane with normal (see Chapter 4), and
therefore is the closest vector in this planego

7.3 Building a Camera in a Program.
It is as interesting and as difficult to say a thing well as to paint it.
Vincent van Gogh

In order to have fine control over camera movements, we create and manipulate our own camera in a
program. After each change to this camera is made, the camera “tells” OpenGL what the new camera is.

We create £amera class that knows how to do all the things a camera does. It's very simple and the
payoff is high. In a program we creat€amera object called, saycam, and adjust it with functions
such as:

cam.set(eye, look, up); //initialize the camera - similar to

gluLookAt()

cam.slide(-1,0,-2); // slide the camera forward and to the left
cam.roll(30); // roll it through 30 °
cam.yaw(20); // yaw it through 20 °

etc.

Figure 7.10 shows the basic definition of the Camera class. It contains fields égethel the
directionsu, v, andn. (Point3 andVector3 are the basic data types defined in Appendix 3.) It also
has fields that describe the shape of the view volwiee/Angle , aspect , nearDist , and

farDist

class Camera{ |

Chapter 3D viewing November 23, 1999 page 7



private:
Point3 eye;
Vector3 u,v,n;
double viewAngle, aspect, nearDist, farDist; // view volume shape
void setModelviewMatrix(); // tell OpenGL where the camera is

public:
Camera(); // default constructor
void set(Point3 eye, Point3 look, Vector3 up); // like gluLookAt()
void roll(float angle); // roll it
void pitch(float angle); // increase pitch
void yaw(float angle); // yaw it
void slide(float delU, float delV, float delN); // slide it
void setShape(float vAng, float asp, float nearD, float farD);

3

Figure 7.10. Th€amera class definition.

The utility routinesetModelviewMatrix () communicates the modelview matrix to OpenGL. It is
used only by member functions of the class, and needs to be called aftehaagh is made to the
camera’s position or orientation. Figure 7.11 shows a possible implementatiomputes the matrix of
Equation 7.2 based on current valuesys# u, v, andn, and loads the matrix directly into the modelview
matrix usingglLoadMatrixf ().

The methodset () acts just likegluLookAt (): it uses the values efye , look , andup to computey, v,
andn according to Equation 7.1. It places this information in the camera’s fieldsoamdunicates it to
OpenGL. Figure 7.11 shows a possible implementation.

void Camera :: setModelViewMatrix(void)

{ /I load modelview matrix with existing camera values
float m[16];
Vector3 eVec(eye.x, eye.y, eye.z); // a vector version of eye
m[0] = u.x; m[4] = u.y; m[8] = u.z; m[12] = -eVec.dot(u);
m[1] = v.x; m[5] = v.y; m[9] = v.z; m[13] = -eVec.dot(V);
m[2] = n.x; m[6] = n.y; m[10] = n.z; m[14] = -eVec.dot(n);
m[3]= 0; m[7]= 0; m[11]= 0; m[15]=1.0;
gIMatrixMode(GL_MODELVIEW);
glLoadMatrixf(m); // load OpenGL’s modelview matrix

void Camera:: set(Point3 Eye, Point3 look, Vector3 up)

{ /I create a modelview matrix and send it to OpenGL
eye.set(Eye); // store the given eye position
n.set(eye.x - look.x, eye.y - look.y, eye.z - look.z); // make n
u.set(up.cross(n)); // make u =up X n
n.normalize(); u.normalize(); // make them unit length
v.set(n.cross(u)); // makev= nXu
setModelViewMatrix(); // tell OpenGL

}

Figure 7.11. The utility routineset () andsetModelViewMatrix ().

The routinesetShape() is even simpler: It puts the four argument values into the appropriate camera
fields, and then callgluPerspective (viewangle ,aspect ,nearDist ,farDist ) (along with
gIMatrixMode (GL PROJECTION andglLoadldentity () to set the projection matrix.

The central camera methods alide (), roll (), yaw(), andpitch (), which makerelative changes to

the camera’s position and orientation. (The whole reason for maintainiegehe, v, andn fields in

our Camera data structure is so that we have a record of the “current” camera, and can therefore alter it.)
We examine how the camera methods operate next.

7.3.1. “Flying” the Camera.

The user flies the camera through a scene interactively by pressing keys or clicking the mouse. For
instance, pressing ‘u’ might slide the camera “up” some amount, pressing ‘y’ might tgethet left, and
pressing ‘' might slide it forward. The user can see how the scene looks from one point of erew, th

Chapter 3D viewing November 23, 1999 page 8



change the camera to a better viewing spot and direction and produce another picture. Océmeflyser
around a scene taking different snapshots. If the snapshots are stored and then glayguidba an
animation is produced of the camera flying around the scene.

There are six degrees of freedom for adjusting a camera: it can be “slid” in three dimensions, and it can
be rotated about any of three coordinate axes. We first develsfidde () function.

Sliding the camera.

Sliding a camera means to move it along onews axes, that is, in the, v, or n direction, without
rotating it. Since the camera is looking along the negatiaris, movement along is “forward” and
“back”. Similarly, movement along is “left” or “right”, and alongv is “up” or “down”.

It is simple to move the camera along one of its axes. To move it difdaaoag itsu-axis, seeyeto
eye+ D u. For convenience we can combine the three possible slides in a single fusict®n(delU ,
delV , delN ) slides the camera amouwtglU alongu, delV alongv, anddelN alongn:

void Camera:: slide(float delU, float delV, float delN)

{
eye.x +=delU * u.x + delV * v.x + delN * n.x;
eye.y +=delU *u.y + delV * v.y + deIN * n.y;
eye.z +=delU * u.z + delV * v.z + delN * n.z;
setModelViewMatrix();

}

Rotating the Camera.
We want to roll, pitch, or yaw the camera. This involves a rotation of the camera abaftits own
axes. We look at rolling in detail; the other two types of rotation are similar.

To roll the camera is to rotate it about its awaxis. This means that both the directiarendv must be
rotated, as shown in Figure 7.12. We form two new akesdV’ that lie in the same plane asandv
et have been rotated through the armgliegrees.

Vi
v“\ A
\ o u
\ //
A ~a » U
//\
/// \\
d \
\

Figure 7.12. Rolling the camera.
So we need only forra’ as the appropriate linear combinationuoéndv, and do similarly fox’:

u’ = cos@) u + sin@) v (7.3)
V' = -sin(@) u + cosg@) v

The new axes’ andV’ then replacal andv in the camera. This is straightforward to implement.

void Camera :: roll(float angle)

{ /I roll the camera through angle degrees
float cs = c0s(3.14159265/180 * angle);
float sn = sin(3.14159265/180 * angle);
Vector3 t(u); // remember old u
u.set(cs*t.x - sn*v.x, Cs*.y - sn*v.y, cs*t.z - sn*v.z);
v.set(sn*t.x + cS*v.x, sn*t.y + cs*v.y, sn*t.z + cs*v.z);
setModelViewMatrix();

Chapter 3D viewing November 23, 1999 page 9



The functionpitch () andyaw() are implemented in a similar fashion. See the exercises.

Putting it all together.

We show in Figure 7.13 how tl@@amera class can be used with OpenGL to fly a camera through a
scene. The scene consists of the lone teapot here. The camera is a global object, and imsa&t (p in
with a good starting view and shape. When a key is presgidyboard () is called, and the camera is
slid or rotated depending on which key was pressed. For instance, if ‘P’ is pressed tteeisg@itehed
up by 1 degree. If CTRL F is pressdtold down the control key and press ‘f), the camera is pitched
down by 1 degree. After the keystroke has been proceghsfbstRedisplay () causes

myDisplay () to be called again to draw the new picture.

/I the usual includes
#include "camera.h"

Camera cam; // global camera object

fl<<<<<<<<<<<<<<<< myKeyboard >>>>>>>>>>5>>>>>>>>>>>>
void myKeyboard(unsigned char key, int x, int y)

{switch(key)

/I controls for camera

case 'F: cam.slide(0,0, 0.2); break; // slide camera forward
case 'F'-64: cam.slide(0,0,-0.2); break; //slide camera back
/[ add up/down and left/right controls

case 'P:  cam.pitch(-1.0); break;

case 'P' - 64: cam.pitch( 1.0); break;

/[ add roll and yaw controls

glutPostRedisplay(); // draw it again

fl<<<<<<ggggc<<<<<<<<<<< myDisplay >>>>>>>>>>>>>>>>>>>>>>>>>>
void myDisplay(void)

glClear(GL_COLOR_BUFFER_BIT||GL_DEPTH_BUFFER_BIT);
glutWireTeapot(1.0); // draw the teapot

glFlush();

glutSwapBulffers(); // display the screen just made

[l<<<<<<<LLLLLLLLLLLLKLLK MAIN >>>>>>55555>555>>>>>>>>>>>>>>>>
void main(int argc, char **argv)

glutinit(&argc, argv);

glutinitDisplayMode(GLUT_DOUBLE | GLUT_RGB); // double buffering
glutinitWindowSize(640,480);

glutinitWindowPaosition(50, 50);

glutCreateWindow("fly a camera around a teapot");
glutkeyboardFunc(myKeyboard);

glutDisplayFunc(myDisplay);

glClearColor(1.0f,1.0f,1.0f,1.0f); // background is white
glColor3f(0.0f,0.0f,0.0f); /I set color of stuff
glViewport(0, 0, 640, 480);

cam.set(4, 4,4, 0,0, 0, 0, 1, 0); // make the initial camera
cam.setShape(30.0f, 64.0f/48.0f, 0.5f, 50.0f);

glutMainLoop();

}

Figure 7.13. Application to fly a camera around the teapot.

2 0On most keyboards pressing CTRL and a letter key returns an ASCII value that is 64 less than the
ASCII value returned by the letter itself.

Chapter 3D viewing November 23, 1999 page 10




Notice the call t@lutSwapBuffers() 3. This application usegouble-buffering to produce a rapid
and smooth transition between one picture and the next. There are two mefieosyused to store the
generated pictures. The display switches from showing one buffeowsrsy the other under the control
of glutSwapBuffers (). Each new picture is drawn in the invisible buffer, and when the dgaiwi
complete the display switches to it. Thus the viewer doesn’t see the screeraadchtieel new picture
slowly emerge line-by-line, which is visually annoying. Instead the “oldfupe is displayed steadily
while the picture is being composed off-screen, and then the display satatyeapidly to the newly
completed picture.

Drawing SDL scenes using a camera.
It is just as easy to incorporate a camera in an application that reads SDL files, ibedles@hapter 5.
There are then two global objects:

Camera cam;
Scene scn;

and in main() an SDL file is read and parsed using scn.read(“myScene Ea@)ly, in
myDisplay (void ), simply replaceylutWireTeapot  (1.0) with scrdrawSceneOpenGL ();

Practice Exercises.

7.3.1. Implementingpitch () and yaw(). Write the functions voi€Camera:: pitch(float

angle) andvoid Camera :: yaw(float angle) that respectively pitch and yaw the camera.
Arrange matters so that a positive yaw yaws the camera to the “left” and a positive pitch pitches the
camera “up”.

7.3.2. Building a universalrotate () method. Write the functionvoid Camera::

rotate(Vector3 axis, float angle) that rotates the camera througfhigle degrees about
axis . It rotates all three axes v, andn about the eye.

7.4. Perspective Projections of 3D Objects
Treat them in terms of the cylinder, the sphere, the cone, all in perspective.
Ashanti proverb

With the Camera class in hand we can navigate around 3D scenes and readily create soigres. U
OpenGL each picture is created by passing vertices of objects (such as a mesh representingr a teapot
chess piece) down the graphics pipeline, as we described in Chapter 5. FiguteWslthe graphics
pipeline again, with one new element.

has perspective division too

Figure 7.14. The graphics pipeline revisited.

Recall that each vertexis multiplied by the modelview matrixM). The modeling partM) embodies
all of the modeling transformations for the object; the viewing pgra¢counts for the transformation
set by the camera’s position and orientation. When a vertex emerges from this matrieyeis in
coordinates that is, in the coordinate system of the eye. Figure 7.15 shows this systemicfotheteye
is at the origin, and the near plane is perpendicular ta-éés residing az = -N. A vertex located &P

in eye coordinates is passed through the next stages of the pipeline where ief@pprojected to a
certain pointX*, y*) on the near plane, clipping is carried out, and finally the surviving vertices are
mapped to the viewport on the display.

Figure 7.15. Perspective projection of vertices expressed in eye coordinates.

3 glutInitDisplayMode () must have an argument GLUT DOUBLEoO enable double-buffering.

Chapter 3D viewing November 23, 1999 page 11



At this point we must look more deeply into the process of forming perspective projedfiomeed

answers to a number of questions. What operations constitute forming a perspective prajedtimw

does the pipeline do these operations? What's the relationship between pergpefot®ons and

matrices. How does the projection map the view volume into a “canonical view volume” fong®#ppi

How is clipping done? How do homogeneous coordinates come into play in the process? How is the
“depth” of a point from the eye retained so that proper hidden surface removal can be done? And what is
that “perspective division” step?

We start by examining the nature of perspective projection, independent of specificipgosesss in
the pipeline. Then we see how the steps in the pipeline are carefully crafted to produce the numerical
values required for a perspective projection.

7.4.1. Perspective Projection of a Point.

The fundamental operation is projecting a 3D point to a 2D point on a plane. Figure 7.16 elaborates on
Figure 7.15 to show poimt = (P,, P,, P,) projecting onto the near plane of the camera to a pdinyA).

We erect a local coordinate system on the near plane, with its origin on the caragig’sThen it is
meaningful to talk about the point x* units over to the right of the origin, and y* units above the origin

Figure 7.16. Finding the projection of a point P in eye coordinates.

The first question is then, what ateandy*? It's simplest to use similar triangles, and g&ys in the
same ratio td, as the distanch is to the distanceP)|. Or sinceP, is negative, we can say

or x*= NP/(-P,). Similarlyy* = NP/(-P,). So we have tha& projects to the point on the viewplane:

PP
(x*,¥) = N E), N—; (the projection oP) (7.4)

An alternate (analytical) method for arriving at this result is given in the easrcis

Example 7.4.1 Where on the viewplane doBs= (1, 0.5, -1.5) lie for the camera having a near plane at
N = 1?Solution: Direct use of Equation 7.4 yields*( y*) = (0.666, 0.333).

We can make some preliminary observations about how points are projected.

1). Note the denominator terrR - It is larger for more remote points (those farther along the negative
axis), which reduces the valuesxfand y*. This introduceperspective foreshortening and makes
remote parts of an object appear smaller than nearer parts.

2). Denominators have a nasty way of evaluating to zeroPapelcomes O wheR lies in the “same
plane” as the eye: ttee= 0 plane. Normally we use clipping to remove such offending points before
trying to project them.

3). If P lies “behind the eye” there is a reversal in sigR pfvhich causes further trouble, as we see later.
These points, too, are usually removed by clipping.

4). The effect of the near plane distahtis simply toscalethe picture (botl* andy* are proportional

to N). So if we choose some other plane (still parallel to the near plane) as the view plane onto which to
project pictures, the projection will differ only in size with the projection onto the near place. 8
ultimately map this projection to a viewport of a fixed size on the display, the size of the projected image
makes no difference. This shows that any viewplane parallel to the near plane wdujdsivas well, so

we might as well use the near plane itself.

Chapter 3D viewing November 23, 1999 page 12



5). Straight lines project to straight lines. Figure 7.17 provides the simplest proof. Coinsiblee in 3D
space between poinfsandB. A projects toA’ and B projects tdB'. But do points betweeA andB

project to points directly betweeki and B'? Yes: just consider the plane formedAy)B and the origin.
Since any two planes intersect in a straight line, this plane intersects the near plane in a straight line.
Thus line segmer&B projects tdine segmenA'B’.

Figure 7.17. Proof that a straight line projects to a straight line.

Example 7.4.2. Three projections of the barn.

A lot of intuition can be acquired by seeing how a simple object is viewed by differentasarndere we
examine how the edges of the barn defined in Chapter 6 and repeated in Figure 7.18 are projected onto
three cameras. The barn has 10 vertices, 15 edges and seven faces.

Figure 7.18. The basic barn revisited.

* View #1: We first set the cameraégyeat (0, 0, 3) and have it look down the negataxis, withu =

(1,0,0) andn = (-1, 0, 0). We will set the near plane at distance 1 from the eye. (The near plane happens
therefore to coincide with the front of the barn.) In terms of camera coordinates &l goihie front

wall of the barn hav®, = -1 and those on the back wall h&e= -2. So from Equation 7.4 any poiif (

P,, P,) on the front wall projects to:

P =(P,P) {projection of a point on the front wall}

and any point on the back wall projects to

P =(P./2,P,/2). {projection of a point on the back wall}

The foreshortening factor is two for those points on the back wall. Figure 7.19a shows the projection of
the barn for this view. Note that edges on the rear wall project at half theirrigib.|&lso note that

edges of the barn that are actually parallel im@Bdnot project as parallel. (We shall see that parallel

edges that are parallel to the viewplane do project as parallel, but paralletredgee not parallel to
the viewplane are not parallel: they recede to a “vanishing point”.)

Figure 7.19. Projections of the barn for views #1 and #2.

View #2 Here the camera has been slid over sodhet (0.5, 0, 2), buti, andn are the same as in view
#1. Figure 7.19b shows the projection.

View #3 Here we use the camera witge= (2, 5, 2) and look = (0,0,0), resulting in Figure 7.20. The
world axes have been added as a guide. This shows the barn from an informative point of viea. From
wireframe view it is difficult to discern which faces are where.

Figure 7.20. A third view of the barn.

Practice Exercises.

7.4.1. Sketch a Cube in Perspectiv®raw (by hand) the perspective view ofebeC (axis-aligned and
centered at the origin, with sides of length 2) when the eyeEs-d on thez-axis. Repeat whe@ is
shifted so that its center is at (1, 1, 1).

7.4.2. Where does the ray hit the viewplane? (Don't skip this one.)

We want to derive Equation 7.4 by finding where the ray from the orighmintersects the near plane.

Chapter 3D viewing November 23, 1999 page 13



a). Show that if this ray is at the origintat 0 and aP at timet = 1, then it has parametric representation
r(t) =Pt

b). Show that it hits the near plane atN/(-P,);

c). Show that the “hit point” isxt, y*) = (NP/(-P,), NP/(-P,)).

7.4.2. Perspective Projection of a Line.
We develop here some interesting properties of perspective projections by examining howlisteaight
project.

1). Lines that are parallel in 3D project to lines, but these lines aren’'t necessary parallel. Iflkedt para
they meet at some “vanishing point.”

2). Lines that pass behind the eye of the camera cause a catastrophic “aesabenfinity”. (Such
lines should be clipped off.)

3). Perspective projections usually produce geometrically realistic pictures. But realism is strained f
very long lines parallel to the viewplane.

1). Projecting Parallel Lines.

We suppose the line in 3D passes (using camera coordinates) through @Ay, Ay, Az) and has
direction vector = (cx, ¢y, Cz). It therefore has parametric for(t) = A + c t. Substituting this form in
Equation 7.4 yields the parametric form for the projection of this line:

o o Aret (Aot
= N N .
PO “A- bt -A- Gt 79

(This may not look like the parametric form for a straight line, but it is. See theseeyd hus the point
A'in 3D projects to the point(0), and ag varies the projected poip{t) moves across the screen (in a
straight line). We can discern several important properties directly from this formula.

Suppose the lind + ct is parallel to the viewplane. Then =0 and the projected line is given by:

p(t):%%th,ﬂwcyt 4

This is the parametric form for a line with slopé,. This slope does not depend on the position of the
line, only its directiorc. Thus all lines in 3D with directionwill project with this slope, so their
projections are parallel. We conclude:

If two lines in 3D are parallel to each otherand to the viewplane, they project to two parallel lines.

Now consider the case where the directios not parallel to the viewplane. For convenience suppose
< 0, so that asincreases the line recedes further and further from the eye. At very large values of
Equation 7.5 becomes:

c
N — (the vanishing point for the line) (7.6)
-C -C

z

p(¥)= N

z

This is called theVanishing point’ for this line: it's the point towards which the projected line moves as
t gets larger and larger. Notice that it depends only on the dirextibthe line and not its position

(which is embodied i®\). Thus all parallel lines share the same vanishing point.

In particular, these lines project to lines thatraoeparallel.

Figure 7.21a makes this more vivid for the example of a cube. Several edges of the cube ele parall
there are those that are horizontal, those that are vertical, and those that recede from the eye. This picture

Chapter 3D viewing November 23, 1999 page 14



was made with the camera oriented so that its near plane was parallel to the front face of the cube. Thus
in camera coordinates tzecomponent ot for the horizontal and vertical edges is 0. The horizontal
edges therefore project to parallel lines, and so do the vertical edges. The receding edges, hewever, ar
not parallel to the view plane, and hence converge onto a vanishing\gBjnA(tists often set up
drawings of objects this way, choosing the vanishing point and sketching parallel lines as pointing at the
VP. We shall see more on vanishing points as we proceed.

—

_7 VP
// ///
—~ ////
~
/d'// // /
/

/
/

/

d

Figure 7.21. The vanishing point for parallel lines.

Figure 7.22 suggests what a vanishing point is geometrically. Looking down onto the campla’e
from above, we see the eye viewing various points on th\Bé projects toA’, B projects tdB’, etc.
Very remote points on the line project\® as shown. The poiltP is situated so that the line from the
eye throughVP is parallel to AB (why?).

Figure 7.22. The geometry of a vanishing point.

2). Lines that Pass Behind the Eye.

We saw earlier that trying to project a point that lies in the plane of the eye (z = 0 in eye coordinates)
results in a denominator of 0, and would surely spell trouble if we try to project it. Wexamine the
projection of a line segment where one endpoint lies in front of the eye, and one endpoint lies behind.

Figure 7.23 again looks down on the camera from above. Point A lies in front of the eye and projects to

A’ in a very reasonable manner. Pditon the other hand, lies behind the eye, and proje&$ tehich

seems to end up on the wrong side of the viewplane! Consider &Jpiat moves fronA to B, and

sketch how its projection moves. Bsmoves back towards the plane of the eye, its projection slides

further and further along the viewplane to the rightCAspproaches the plane of the eye its projection

spurts off to infinity, and a€ moves behind the eye its projection reappears from far off to the left on the
viewplane! You might say that the projection has “wrapped around infinity” and come back from the
opposite direction [blinn96]. If we tried to draw such a line there would most likely los.cNarmally

all parts of the line closer to the eye than the near plane are clipped off before the projection is attempted.

Figure 7.23. Projecting the line segmam, with B “behind the eye.”

Example 7.4.3. The Classic Horizontal Plane in Perspective.

A good way to gain insight into vanishing points is to view a grid of lines in perspective, as in Figure 7.24.
Grid lines here lie in thezplane, and are spaced 1 unit apart. The eye is perched 1 unit abrezeldre,

at (0, 1, 0), and looks along,-wheren = (0,0,1). As usual we takep = (0,1,0).N is chosen to be 1.

Chapter 3D viewing November 23, 1999 page 15



Figure 7.24. Viewing a horizontal grid on tkeplane.

The grid lines of constamthave parametric form in eye coordinates ofo(t), wherei = ..,-2, -1, 0, 1,

2, ... and varies from 0 té¢ . By Equation 7.4 thieth line projects to (t/ 21t), which is a line through
the vanishing point (0, 0), so all of these lines converge on the same vanishing point, as expected.

The grid lines of constatare given byt( 0, 4), wherei = 1, 2, .N for someN., andt varies from -¥

to ¥. These project to (i, -2/), which appear as horizontal straight lines (check this). Their projections
are parallel since the gridlines themselves are parallel to the viewplane. The mdeeamesqlarger

values ofi) lie closer together, providing a vivid example of perspective forésting. Many of the

remote contours are not drawn here, as they become so crowded they canneh letedirdy. The

horizon consists of all the contours whezres very large and negative; it is positioneq &t 0.

3). The anomaly of viewing long parallel lines.

Perspective projections seem to be a reasonable model for the way we see. But there are some anomalies,
mainly because our eyes do not have planar “view screens”. The problem occurs for very long objects.
Consider an experiment, for example, where you look up at a pair of parallel telephone wires, as
suggested in Figure 7.25a.

a). viewing parallel b). A perspective c). What your eye sees
telephone wires projection shows

Figure 7.25. Viewing very long parallel wires. (use old 12.14).
For the perspective view, if we orient the viewplane to be parallel to the, wiesknow the image will

show two straight and parallel lines (part b). But what you see is quite different. Theppiees aurved
as they converge to “vanishing points” in both directions (part c)! In Practice this anisrbalely

Chapter 3D viewing November 23, 1999 page 16



visible because the window or your eye limits the field of view to a reasonable region. (To see different
parts of the wires you have to roll your eyes up and down, which of course rotates your “view planes”.)

Practice Exercises.

7.4.3. Straight lines project as straight lines: the parametric formShow that the parametric form in
Equation 7.5 is that of a straight line. Hint: For sheomponent divide the denominator into the
numerator to getA N/A, + R g(t) whereR depends on thecomponents ofA andc, but not they-
components, ang(t) is some function of that depends on neither th@ory-components. Repeat for the
y-component, obtaining&N/A, + Sdt) with similar properties. Argue why this is the parametric
representation of a straight line, (albeit one for which the point does not move with copstzhas
varies).

7.4.4. Derive results for horizontal grids Derive the parametric forms for the projected grid lines in
Example 7.4.3.

7.4.3. Incorporating Perspective in the Graphics Pipeline.
Only a fool tests the depth of the river with both feet.
Paul Cezanne, 1925

We want the graphics pipeline to project vertices of 3D objects onto the near plane, then magiiem t
viewport. After passing through the modelview matrix, the vertices are repr@getie camera’s
coordinate system, and Equation 7.4 shows the values we need to compute for the proper py@gction.
need to do clipping, and then map what survives to the viewport. But we need a little more as well.

Adding Pseudodepth.
Taking a projection discards depth information; that is, how far the point is from the eye. Butstnet
discard this information completely, or it will be impossible to do hidden surface removal later.

The actual distance of a poltirom the eye in camera coordinates/iF, > + Py2 + P?, which would

be cumbersome and slow to compute for each point of interest. All we really need is some measure of
distance that tells when two points project togamepoint on the near plane, which is the closer. Figure
7.26 shows pointB, andP, that both lie on a line from the eye, and therefore project to the same point.
We must be able to test whetlieobscured?, or vice versa. So for each polthat we project we

compute a value called tipseudodepththat provides an adequate measure of deptR.féve then say
thatP projects to (x*, y*, z*), where (x*, y*) is the value provided in Equation 7.4 and z* is its
pseudodepth.

Figure 7.26. I, closer tharP, or farther away?

What is a good choice for the pseudodepth function? Notice that if two points project to the same point
the farther one always has a more negative val®, ab we might useP; itself for pseudodepth. But it

will turn out to be very harmonious and efficient to choose a function witkatime denominatdgP,) as
occurs withx* andy*. So we try a function that has this denominator, and a numerator that is lifgar in
and say thaP “projects to”

P +

Oy 2) = Nk Ny 8RFD

- I:)z - I:)z - I:)z
for some choice of the constamtandb. Although many different choices farandb will do, we choose
them so that the pseudodepth varies between -1 and 1 (we see later why these are gopdSatceces
depth increases as a point moves further down the negadiis, we decide that the pseudodepth is -1
whenP, = -N, and is +1 whe®, = -F. With these two conditions we can easily solveafandb,
obtaining:

(7.7)

+ -
_F+N _-2FN

’ - 7.8
F-N' F-N (78

Chapter 3D viewing November 23, 1999 page 17



Figure 7.27 plots pseudodepth versis)(-As we insisted it grows from -1 for a point on the near plane
up to +1 for a point on the far plane. Rsapproaches 0 (so that the point is just in front of the eye)
pseudodepth plummets té.-For a point just behind the eye, the pseudodepth is huge and positive. But
we will clip off points that lie closer than the near plane, so this catastrophic d&retvdlvnever be
encountered.

Figure 7.27. Pseudodepth growsPabecomes more negative.

Also notice that pseudodepth values bunch togethePggéts closer té&. Given the finite precision
arithmetic of a computer, this can cause a problem when you must distinguish the pseudodepth of two
points during hidden surface removal: the points have different tptesifom the eye, but their
pseudodepths come out with the same value!

Note that defining pseudodepth as in Equation 7.7 causes it to become more poBitlvecasnes more
negative. This seems reasonable since depth from the eye increBse®uass further along the
negativez-axis.

Example 7.4.4. Pseudodepth varies slowly a$>(} approacheskF.
SupposéN = 1 andF = 100. This produces = -101/99 and = -200/99, so pseudodepth is given by

101P, + 200
pseudodepthy_, .., = oo

z
This maps appropriately to -1Rf=-N, and 1 aP, = -F. But close toF it varies quite slowly with ).
For (P, ) values of 97, 98, and 99, for instance, this evaluates to 1.041028, 1.040816, and 1.040608.

A little algebra (see the exercises) shows that vithenmuch smaller thaR as it normally will be,
pseudodepth can be approximated by

pseudodepth 1+ ZP—N (7.9)

z

Again you see that it varies more and more slowly R} &pproachef. But its variation is increased by
using large values di. N should be set as large as possible (but of course not so large that objects
nearest to the camera are clipped off!).

Using Homogeneous Coordinates.

Why was there consideration given to having the same denominator for each term in Equatiswe7
now show, this makes it possible to represent all of the steps so far in the graphice pgpetatrix
multiplications, offering both processing efficiency and uniformity. (Chips on soaphigs cards can
multiply a point by a matrix in hardware, making this operation extremely fast!) Doing it this way will
also allow us to set things up for a highly efficient and reliable clipping step.

The new approach requires that we represent points in homogeneous coordinates. We have been doing
that anyway, since this makes it easier to transform a vertex by the modelview matrix. But we are going
to expand the notion of the homogeneous coordinate representation beyond what we have needed before
now, and therein find new power. In particular, a matrix will not only be able to performira aff
transformation, it will be able to perform a “perspective transformation.”

Up to now we have said that a poiht (P,, P,, P,) has the representatioR (P, P,, 1) in homogeneous
coordinates, and that a vector (v,, v,, v,) has the representatiow,(v,, v, 0 ). We have simply

appended a 1 or 0. This made it possible to use coordinate frames as a basis for representirg the point
and vectors of interest, and it allowed us to represent an affine transformation bixa matr

Now we extend the idea , and say that a peint(P,, P, P,) has a whole family of homogeneous

representationsvP,, wP,, wP,, w) for any value ofw except 0. For example, the point (1, 2, 3) has the
representations (1, 2, 3, 1), (2, 4, 6, 2), (0.003, 0.006, 0.009, 0.001), (-1, -2, -3, -1), and so forth. If

Chapter 3D viewing November 23, 1999 page 18



someone hands you a point in this form, say (3, 6, 2, 3) and asks what point is it, just divide through by
the last component to get (1, 2, 2/3, 1), then discard the last component: the point in “ordinary”
coordinates is (1, 2, 2/3). Thus:

To convert a point fronerdinary coordinateso homogeneous coordinatesppend a4
To convert a point fronthomogeneous coordinatesordinary coordinatesdivide all components by
the last component, and discard the fourth component.

The additional property of being able to scale all the components of a point without changing the point is
really the basis for the name “homogeneous”. Up until now we have always been watkitlgew
special case where the final component is 1.

We examine homogeneous coordinates further in the exercises, but now focus on how they bperate w
transforming points. Affine transformations work fine when homogemeoardinates are used. Recall

that the matrix for an affine transformation always has (0,0,0,1) in its fourth row. Theref@e if

multiply a pointP in homogeneous representation by such a mistrito formMP = Q (recall Equation

5.24), as in the example

2 -1 3 1 wP, wQ,
6 5 1 4 wPR _ wQ,
0 4 2 -3 wP, wQ,
0O 0 0 1 w w

the final component d will always be unaltered: it is sti. Therefore we can convert tiggback to
ordinary coordinates in the usual fashion.

But something new happens if we deviate from a fourth row of (0,0,0,1). Consider the importgpleexam
that has a fourth row of (0, 0, -1, 0), (which is close to what we shall later call the “projection matrix”):

N O O O

0O N OO o . .

00 a b (the projection matrix - version 1) (7.10)
0O 0 -1 0

for any choices o, a, andb. Multiply this by a point represented in homogeneous coordinates with an
arbitraryw:

N O O O wR WNRB,
0O N O 0O wk  wNR
0 0 a bwkP waR+h
0 0 -1 0 w - WP,

This corresponds to an ordinary point, but which one? Divide through by the fourth component and
discard it, to obtain

4 and, if you wish, multiply all four components by any nonzero value.

Chapter 3D viewing November 23, 1999 page 19



which is precisely what we need according to Equation 7.7. Thus using homogenedirmate®allows
us to capture perspective using a matrix multiplication! To make it work we must always divide through
by the fourth component, a step which is capedspective division

A matrix that has values other than (0,0,0,1) for its fourth row does not perform an affifiertnation.
It performs a more general class of transformation callgetspective transformation It is a
transformation not a projection. A projection reduces the dimensionality of a point, to & 8tapl-
tuple, whereas a perspective transformation takes a 4-tuple and produces a 4-tuple.

Consider the algebraic effect of putting nonzero values in the fourth row of the matrix, such as

(A,B,C,D). When you multiply the matrix byP(, P, P,, 1) (or any multiple thereof) the fourth term in the
resulting point becomesP, + BP, + CP, + D, making it linearly dependent on each of the components of

P. After perspective division this term appears in the denominator of the point. 8eabrainator is

exactly what is needed to produce the geometric effect of perspective projection onto a general plane, as
we show in the exercises.

The perspective transformation therefore carries a 3D pamtb another 3D poir®’, according to:

P
(P.R.P)® NP Ny 3R*D
RRTR

z

“the perspective transformation” (7.11)

Where does the projection part come into play? Further along the pipeline thedicsirhponents of
this point are used for drawing: to locate in screen coordinates the position of the peintréovn. The
third component is “peeled off” to be used for depth testing. As far as locating the poiatsametén is
concerned, ignoring the third component is equivalent to replacing it by 0, as in:

P + P
N i ,N— ,aF; b ® N i N—0 “the projection” (7.12)
BRR T TR R

This is just what we did in Chapter 5 to project a point “orthographically” (meaning perpkambji to
the viewplane) when setting up a camera for our first efforts at viewing a 3D scene. We will study
orthographic projections in full detail later. For now we can conclude:

(perspective projection) = (perspective transformation) + (orthographic pjection)

This decomposition of a perspective projection into a specific transformatiowéallby a (trivial)
projection will prove very useful, both algorithmically and for understanding better what each point
actually experiences as it passes through the graphics pipeline. OpenGL does the tréosfetepat
separately from the projection step. In fact it inserts clipping, perspective diasidrpne additional
mapping between them. We next look deeper into the transformation part of the process.

The Geometric Nature of the Perspective Transformation.

The perspective transformation alters 3D point P into another 3D point according to EGuEticio

“prepare it” for projection. It is useful to think of it as causing a “warping” of 3D spadeioasee how it

warps one shape into another. Very importantly, it preserves straightness andsflaiadines

transform into lines, planes into planes, and polygonal faces into other polygonal faces. It also preserves
“in-between-ness”, so if point a is inside an object, the transformed point will also keetimsid

transformed object. (Our choice of a suitable pseudodepth function was guided by the need to preserve
these properties.) The proof of these properties is developed in the exercises.

Of particular interest is how it transforms the camera’s view volume, because if we are gaing to d
clipping in the warped space, we will be clipping against the warped view volume. The perspective
transformation shines in this regard: the warped view volume is a perfect shape for simpfeiend ef
clipping! Figure 7.28 suggests how the view volume and other shapes are transformed. The néar plane
atz=-N maps into the plané/ at z= -1, and the far plane maps to the plane=at-1. The top wall is

“tilted” into the horizontal plan@” so that is parallel to theaxis. The bottom wals becomes the

Chapter 3D viewing November 23, 1999 page 20



horizontalS, and the two side walls become parallel to #eis. The camera’s view volume is
transformed into a parallelepiped!

Figure 7.28. The view volume warped by the perspective transformation.

It's easy to prove how these planes map, because they all involve lines that are either parallel to the near
plane or that pass through the eye. Check these carefully:

Fact: Lines through the eye map into lines parallel to the z-&iof: All points of such a line project
to a single point, sayf, y*), on the viewplane. So all of the points along the line transform to all of the
points §, y, 2) with x = x*, y = y*, andz taking on all pseudodepth values between -1 and 1.

Fact: Lines perpendicular to theaxis map to lines perpendicular to thaxis. Proof: All points along
such a line have the sareeoordinate, so they all map to points with the same pseudodepth value.

Using these facts it is straightforward to derive the exact shape and dimensions of the igarped v
volume.

The transformation also “warps” objects, like the blocks shown, into new shapes. Figurehdw2sSla s

block being projected onto the near plane. Suppose the top edge of its front face prgje@satad the

top edge of its back face projectsyte 1. When this block is transformed, it becomes a truncated

pyramid: the top edge of its front falies at y= 2, and the top edge of its back face liegatl.Things

closer to the eye than the near plane become bigger, and things beyond the near plane become smaller.
The transformed object is smaller at the back than the front because the original object projects that way.
Thex andy-coordinates of the transformed object arexthendy-coordinates of thprojectionof the

original object. These are the coordinates you would encounter upon making an orthographic projection
of the transformed object. In a nutshell:

The perspective transformation “warps” objects so that, when viewed with an orthographic iproject
they appear the same as the original objects do when viewed with a perspective projection.

So all objects are warped into properly foreshortened shapes according to the rulspesftive
projection. Thereafter they can be viewed with an orthographic projection, and the patre is
produced.

We look more closely at the specific shape and dimensions of the transformed view.volum

Details of the Transformed View Volume, and mapping into the Canonical View Vame.

We want to put some numbers on the dimensions of the view volume before and after it is warped.
Consider the top plane, and suppose it passes through thelgiitdig, -N) atz= -N as shown in Figure

7.29. Because it is composed of lines that pass through the eye and through points in the near plane all of
which have g-coordinate ofop, it must transform to the playe= top. Similarly,

Figure 7.29. Details of the perspective transformation.

- the bottom plane transforms to the bott plane;
- the left plane transforms to the= left plane;
- the right plane transforms to tle= right.

We now know the transformed view volume precisely: a parallelepiped with dimensions tredatme

to the camera’s properties in a very simple way. This is a splendid shape to clip against as we shall see,
because its walls are parallel to the coordinate planes. But it would be an even better shape fpifclippin
its dimensions didn’t depend on the particular camera being used. OpenGL composes the perspective
transformation with another mapping that scales and shifts this parallelepiped icandnéal view

volume, a cube that extends from -1 to 1 in each dimension. Because this scales things differently in the

Chapter 3D viewing November 23, 1999 page 21



x- andy- dimensions as it “squashes” the scene into a fixed volume it introduces some distortion, but the
distortion will be eliminated in the final viewport transformation.

The transformed view volume already extends from -1 tozl $o it only needs to be scaled in the other
two dimensions. We therefore include a scaling and shift insbattdy to map the parallelepiped into
the canonical view volume. We first shift byight + left)/2 in x and by -{op + bott)/2 iny. Then we

scale by 2ffght - left) in x and by 2A0op - bott) in y. When the matrix multiplications are done (see the
exercises) we obtain the final matrix:

2N 0 right + left 0
right - left right - left
0 2N top+ bott 0
R= top- bott top- bott (the projection matrix) (7.13)
0 -(F+ N) -2FN
F-N F-N
0 -1 0

This is known as thprojection matrix , and it performs the perspective transformation plus a scaling and
shifting to transform the camera’s view volume into the canonical view volume. It isglsettie matrix

that OpenGL creates (and by which it multiplies the current matrix) gieonstum(left,

right, bott, top, N, F) is executed. Recall thgtuPerspective(viewAngle,

aspect, N, F) is usually used instead, as its parameters are more intuitive. This sets up the same
matrix, after computing values ftwp, bott, etc. using

_ p .
top = Ntan— viewAngle/2
P (180 9le2)
bott = -top, right = top * aspect andleft = -right.

Clipping Faces against the View Volume.

Recall from Figure 7.14 that clipping is performed after vertices have passed through the projectio
matrix. It is done in this warped space because the canonical view volume is particularly well suited for
efficient clipping. Here we show how to exploit this, and we develop the details of the clipping
algorithm.

Clipping in the warped space works because a point lies inside the camera’s view volumeniy &nd o
its transformed version lies inside the canonical view volume. Figure 7.30a shows an exariymbéngf c
in action. A triangle has vertices v,, andv,. Vertexy, lies outside the canonical view volunt@yV.

The clipper works on edges: it first clips edge, and finds that the entire edge lies ins@léV. Then it
clips edgev,v,, and records the new verteXormed where the edge exits from @¥V. Finally it clips
edgev,v, and records the new vertex where the edge ente@®uleAt the end of the process the
original triangle has become a quadrilateral with verticea b. (We will see later that in addition to
identifying the locations of the new vertices, the pipeline also computesaiemand texture parameters
at these new vertices.)

a). clip a triangle b). clip an edge

Figure 7.30. Clipping against the canonical view volume.

The clipping problem is basically the problem of clipping a line segment agairGV#héNe examined
such an algorithm, the Cyrus-Beck clipper, in Section 4.8.3. The clipper we develop haiaits
that one, but of course it works in 3D rather than 2D.

Actually, it works in 4D. We will clip in the 4D homogeneous coordinate space called “clip coordinates”
in Figure 7.14. This is easier than it might seem, and it will nicely distinguish between points in front of,
and behind, the eye.

Suppose we want to clip the line segm&@tshown in Figure 7.30b against the CVV. This means we are
given two points in homogeneous coordinates, (&, a, a, a,) andC = (¢, ¢, c, ¢,), and we want to

X3 Myr 70

Chapter 3D viewing November 23, 1999 page 22



determine which part of the segment lies insideQh¥. If the segment intersects the boundary of the
CVVwe will need to compute the intersection pdint(,, I, 1., 1,).

As with the Cyrus-Beck algorithm we view the CVV as six infinite planes, and consider whereehe gi
edge lies relative to each plane in turn. We can represent the edge parametricall{Cag)t. It lies at

A whent is 0, and aC whent is 1. For each wall of theVV we first test whethef andC lie on the

same side of a wall: if they do there is no need to compute the intersection of the edge with the wall. If
they lie on opposite sides we locate the intersection point and clip off the part dfththat lies

outside.

So we must be able to test whether a point is on the “outside” or “inside” of a plane. Take the=plane
for instance, which is one of the walls of 8¥V. The pointA lies to the right of it (on the “inside”) if

%»1 oo a>-a, or (a+ gp O (7.14)

(When you multiply both sides of an inequality by a negative term you must reverse the direction of the
inequality. But we are ultimately dealing with only positive values, ohere - see the exercises.)
Similarly A is inside the plang = 1 if

a
%51 o (a,-a)>0
a,

Blinn [blinn96] calls these quantities the “boundary coordinates” of ggiand he lists the six such
guantities that we work with as in Figure 7.31:

boundary coordinate  homogeneous value clip plane

BG, W+X X=-1

BC, W-X X=1

BC, w+ty Y=-1

BC, W-y Y=1

BC, W+X Z=-1

BC. W-Z Z=1

Figure 7.31. The boundary codes computed for each end point of an edge.

We form these six quantities férand again fo€. If all six are positive the point lies inside @&V. If
any are negative the point lies outside. If both points lie inside we have the sanoé ‘tiivial accept”
we had in the Cohen Sutherland clipper of Section 38aidC lie outside on the same side
(correspondind@C's are negative) the edge must lie wholly outsideGh#/.

Trivial accept: both endpoints lie inside the CVV (all 12 BC's are positive)
Trivial reject: both endpoints lie outside the same plane of the CVV.

If neither condition prevails we must clip segma@ against each plane individually. Just as with the
Cyrus-Beck clipper, we keep track otandidate interval (Cl) (see Figure 4.45), an interval of time
during which the edge might still be inside ®¥V. Basically we know the conversetifs outside the
Cl we know for sure the edgenst inside theCVV. TheCl extends front =t tot,,.

We test the edge against each wall in turn. If the corresponding boundary codes have opposite signs we
know the edge hits the plane at sampewhich we then compute. If the edge “is entering” (is moving into
the “inside” of the plane dtincreases) we updatg= maxold t,, t,.), since it could not possibly be

entering at an earlier time thgp Similarly, if the edge is exiting, we updage=min(old t , t.). If at

any time theCl is reduced to the empty intervg (becomes %, ) we know the entire edge is clipped off

and we have an “early out”, which saves unnecessary computation.

It is straightforward to calculate the hit time of an edge with a plane. Write the edge parametrically in
homogeneous coordinates:

Chapter 3D viewing November 23, 1999 page 23



edgdt) =@ +(ca)t,a +(c,-a)ta+(-a)ta, +(C,-a)t)

If it's the X = 1 plane, for instance, when theoordinate ofA + (C-A)t is 1:
a, +(c - a)t _1

a, +(c, - at

This is easily solved far, yielding

{= & - & (7.15)
(a, - &) (¢; ¢)

Note that,, depends on only two boundary coordinates. Intersection with other planes yield similar
formulas.

This is easily put into code, as shown in Figure 7.32. This is basically the Liang Barsky algorithm
[liang84], with some refinements suggested by Blinn [blinn96]. The roalipEdge(Point4 A,

Point4 C) takes two points in homogeneous coordinates (having fieldz, andw) and returns O if
no part ofAC lies in theCVV, and 1 otherwise. It also alteksand C so that when the routine is finished
A andC are the endpoints of the clipped edge.

The routine finds the six boundary coordinates for each endpoint and stores #&@j]inandcBC[] .

For efficiency it also builds aoutcodefor each point, which holds tteignsof the six boundary codes
for that point. Biti of A's outcode holds a 0 @BC[i] > 0 (A is inside tha-th wall) and a 1 otherwise.
Using these, a trivial accept occurs when lagflutcode andcOutcode are 0. A trivial reject occurs
when the bit-wise AND of the two outcodes is nonzero.

int clipEdge(Point4& A, Point4& C)
{

double tin = 0.0, tOut = 1.0, tHit;
double aBC[6], cBC[6];

int aOutcode = 0, cOutcode = 0;
<..find BC'sforAand C ..>

<.. form outcodes for Aand C ..>

if((aOutcode & cOutcode) = 0) // trivial reject
return O;

if((aOutcode | cOutcode) == 0) // trivial accept
return 1;

for(inti=0; i< 6; i++) // clip against each plane

{
if(cBCJi] < 0) // exits: C is outside

tHit = aBC]i]/(aBC]i] - cBCJi]);
tOut = MIN(tOut,tHit);

}
else if(aBC[i] < 0) //enters: A is outside

tHit = aBC[i)/(aBC[i] - cBCIi]);
tin = MAX(tIn, tHit);

}
if(tln > tOut) return 0; //Cl is empty early out

/[ update the end points as necessary
Point4 tmp;
if(@Outcode != 0) // A is out: tin has changed
{/l'find updated A, (but don’t change it yet)
tmp.x = Ax +tln * (C.x - A.X);
tmp.y = Ay +tin * (C.y - ALy);
tmp.z=A.z+tin*(C.z - A.2);
tmp.w =Aw + tIn * (C.w - A.w);

Chapter 3D viewing November 23, 1999 page 24



}

if(cOutcode = 0) // C is out: tOut has changed

{ /lupdate C (using original value of A)
Cx=Ax+tOut* (C.x-AX);
Cy=Ay+tOut* (Cy-Ay);
Cz=Az+tOut*(C.z-AZz);
C.w=Aw +tOut * (C.w - A.w);

}
A =tmp; // now update A
return 1; // some of the edge lies inside the CVV

Figure 7.32. The edge clipper (as refined by Blinn).

In the loop that tests the edge against each plane, at most one of the BC’s can be negative. AVhy?) If
has negativ8C the edge must be entering at the hit poin€ ifas a negativBC the edge must be

exiting at the hit point. (Why?) (Blinn uses a slightly faster test by incorporating a haskgts one bit

of an outcode.) Each tintth ortOut are updated an early out is taketlif has become greater than
tQut.

When all planes have been tested, one or batim ofandtOut have been altered (whyA.is updated
to A+ (i-A)tinif tin has changed, ar@is updated té\ + (C - A) tOutif tOut has changed.

Blinn suggests pre-computing the BC's and outcode for every point to be processed. The eliminates the
need to re-compute these quantities when a vertex is an endpoint of more than one edge, as is often the
case.

Why did we clip against the canonical view volume?

Now that we have seen how easy it is to do clipping against the canonical view volume, wetban se
value of having transformed all objects of interest into it prior to clipping. Therevarimportant
features of th&€VV:

1. Itis parameter-free: the algorithm needs no extra information to describe the clippingevitl uses
only the values -1 and 1. So the code itself can be highly tuned for maximum efficiency.

2. lts planes are aligned with the coordinate axes (after the perspective transformationriseg@rfor
This means that we can determine which side of a plane a point lies on using a single coosdinate, a
ina,_> -1. If the planes were not aligned, an expensive dot product would be needed.

Why did we clip in homogeneous coordinates, rather than after the perspectiveuition step?

This isn’t completely necessary, but it makes the clipping algorithm clean, fast, and simple. Doing the
perspective divide step destroys information: if you have the vajuagla, explicitly you know of

course the signs of both of them. But given only the &f&, you can tell only whethex anda, have

the same or opposite signs. Keeping values in homogeneous coordinates and clipping points closer to the
eye than the near plane automatically removes points that lie behind the eye, such as B in Figure 7.23.

Some “perverse” situations that necessitate clipping in homogeneous coordinates areddascribe
[blinn96, foley90]. They involve peculiar transformations of objects, or construction of certain surfaces,
where the original point (aa, a, g,) has a negative fourth term, even though the point is in front of the
eye. None of the objects we discuss modeling here involve such cases. We conclude that clipping in
homogeneous coordinates, although usually not cricitcal, makes the algorithm fast and aunipligs

it almost no cost.

Following the clipping operatioperspective divisionis finally done, (as in Figure 7.14), and the 3-tuple
(%, y, 2) is passed through the viewport transformation. As we discuss next, this transfiorsizgs and
shifts thex- andy- values so they are placed properly in the viewport, and makes minor adjustments on
the z component (pseudodepth) to make it more suitable for depth testing.

The Viewport Transformation.

Chapter 3D viewing November 23, 1999 page 25



As we have seen the perspective transformation squashes the scene into the canon&satcegbested

in Figure 7.33. If the aspect ratio of the camera’s view volume (that is, the asfmeof the window on

the near plane) is 1.5, there is obvious distortion introduced when the perspective trarsicoadtis
objects into a window with aspect ratio 1. But the viewport transformation can undo this distortion by
mapping a square into a viewport of aspect ratio 1.5. We normally set the aspect ratisi@fvfort to

be the same as that of the view volume.

Figure 7.33. The viewport transformation restores aspect ratio.

We have encountered the OpenGL functitviewport(x, y, wid, ht) often before. It specifies
that the viewport will have lower left corngty) in screen coordinates, and will twd pixels wide
andht pixels high. It thus specifies a viewport with aspect raitb/ht . The viewport transformation
also maps pseudodepth from the range -1 to 1 into the range 0 to 1.

Review Figure 7.14, which reveals the entire graphics pipeline. EachPgiftich is usually one vertex
of a polygon) is passed through the following steps:

- Pisextendedto a homogeneous 4-tuple by appending a 1;

- This 4-tuple is multiplied by thmodelview matrix, producing a 4-tuple giving the position in eye
coordinates;

- The point is then multiplied by thgrojection matrix, producing a 4-tuple in clip coordinates;

- The edge having this point as an endpoirmdifgped;

- Perspective divisionis performed, returning a 3-tuple;

- Theviewport transformation multiplies the 3-tuple by a matrix: the resuk (sy, d2) is used for
drawing and depth calculationsx(sy) is the point in screen coordinates to be displagieds a
measure of the depth of the original point from the eye of the camera.

Practice Exercises.
7.4.5. P projects whereBuppose the viewplane is given in camera coordinates by the eqatidBy
+ Cz=D. Show that any poir® projects onto this plane at the point given in homogeneous coordinates

P = (DR, DR, DR, AR + BR+ CP)

Do it using these steps.

a). Show that the projected point is the point at which the ray between the éydigthe given plane.
b). Show that the ray is given By, and it hits the plane &t = D/(AP, + BP, + CP).

¢). Show that the projected point - the hit point - is therefore given properly above.

d). Show that for the near plane we use earlier, we obtgin*) as given by Equation 7.4.

7.4.6. A revealing approximate form for pseudodepth.Show that pseudodepsht+ b/(-P,), wherea

andb are given in Equation 7.8, is well approximated by Equation 7.9 Whemuch smaller thaR.
7.4.7. Points at infinity in homogeneous coordinate€onsider the nature of the homogeneous
coordinate pointx, y, z, w) asw becomes smaller and smaller. kor .01 it is (10Q, 100y, 10), for w
=0.0001 it is (10009 1000@, 1000Q@), etc. It progresses out” toward infinity” in the directiony 2).
The point with representatior, {y, z, 0) is in fact called a “point at infinity”. It is one of the advantages
of homogeneous coordinates that such an idealized point has a perfectly “finite&négiies: in some
mathematical derivations this removes many awkward special cases. For instance, two lines will always
intersect, even if they are parallel [ayers67, semple52]. But other things don't weel.a#/hat is the
difference of two points in homogeneous coordinates?

7.4.8. How does the perspective transformation affect lines and planes?

We must show that the perspective transformation preserves flatness and in-between-ness.

a). Argue why this is proven if we can show that a pBihting on the line between two poirdsandB
transforms to a poir®’ that lies between the transformed versionsé aindB.

b). Show that the perspective transformation does indeed produce &'pwittit the property just stated.
c). Show that each plane that passes through the eye maps to a plane that is parattelis.the

d). Show that each plane that is parallel tozhgis maps to a plane parallel to thexis.

e). Show that relative depth is preserved;

7.4.9. The details of the transformed view volumeshow that the warped view volume has the
dimensions given in the five points above. You can use the facts developed in the preceding exercise.

Chapter 3D viewing November 23, 1999 page 26



7.4.10. Show the final form of the projection matrix. The projection matrix is basically that of
Equation 7.10, followed by the shift and scaling described. If the matrix of Equation 7.10 is denoted as
M, andT represents the shifting matrix, aBdhe scaling matrix, show that the matrix prodB&Mis

that given in Equation 7.13.

7.4.11. What Becomes of Points Behind the Ey#é2he perspective transformation moves the eye off to
-infinity, what happens to points that lie behind the eye? Consider ®(iethat begins at a point in

front of the eye at= 0 and moves to one behind the eye=ail.

a). Find its parametric form in homogeneous coordinates;

b). Find the parametric representation after it undergoes the perspective tratisforma

c). Interpret it geometrically. Specifically state what the fourth homogeneousraterds geometrically.

A valuable discussion of this phenomenon is given in [blinn78].

Chapter 3D viewing November 23, 1999 page 27



(For ECE660 - Fall, 1999)

Chapter 8 Rendering Faces for Visual Realism.

Goals of the Chapter

To add realism to drawings of 3D scenes.

To examine ways to determine how light reflects off of surfaces.
To render polygonal meshes that are bathed in light.

To see how to make a polygonal mesh object appear smooth.

To develop a simple hidden surface removal using a depth-buffer.
To develop methods for adding textures to the surfaces of objects.
To add shadows of objects to a scene.

Preview.

Section 8.1 motivates the need for enhancing the realism of pictures of 3D objects 8&cti

introduces various shading models used in computer graphics, and develops tools for computing the
ambient, diffuse, and specular light contributions to an object’s color. It alsoleshow to set up

light sources in OpenGL, how to describe the material properties of surfaces, and howrt@é Op
graphics pipeline operates when rendering polygonal meshes.

Section 8.3 focuses on rendering objects modeled as polygon meshes. Flat shading, as well as
Gouraud and Phong shading, are described. Section 8.4 develops a simple hidden surface removal
technique based on a depth buffer. Proper hidden surface removal greatly improves the realism of
pictures.

Section 8.5 develops methods for “painting” texture onto the surface of an object, to make it appear
to be made of a real material such as brick or wood, or to wrap a label or picture of a friend around
it. Procedural textures, which create texture through a routine, are also desdnibdubriy issue

of proper interpolation of texture is developed in detail. Section 8.5.4 presents a complete program
that uses OpenGL to add texture to objects. The next sections discuss mapping texture onto curved
surfaces, bump mapping, and environment mapping, providing more tools fiognaa®D scene

appear real.

Section 8.6 describes two techniques for adding shadows to pictures. The chapter fitiishes w
number of Case Studies that delve deeper into some of these topics, and urges the reader to
experiment with them.

8.1. Introduction.

In previous chapters we have developed tools for modeling mesh objects, and for manipulating a
camera to view them and make pictures. Now we want to add tools to make these objectg@and othe
look visually interesting, or realistic, or both. Some examples in Chapter 5 invoked a humber of
OpenGL functions to produce shiny teapots and spheres apparently bathed in light, but none of the
underlying theory of how this is done was examined. Here we rectify this, and develogtb lo
rendering a picture of the objects of interest. This is the businessmputinghow each pixel of a
picture should look. Much of it is based oslading mode] which attempts to model how light

that emanates from light sources would interact with objects in a scene. Due to practical limitations
one usually doesn't try to simulate all of the physical principles of light scatterthgeflection;

this is very complicated and would lead to very slow algorithms. But a number of approximate
models have been invented that do a good job and produce various levels of realism.

We start by describing a hierarchy of techniques that provide increasing levels of realisn; in orde
to show the basic issues involved. Then we examine how to incorporate each technique in an
application, and also how to use OpenGL to do much of the hard work for us.

At the bottom of the hierarchy, offering the lowest level of realismwisexframe rendering.

Figure 8.1 shows a flurry of 540 cubes as wire-frames. Only the edges of each object are drawn, and
you can see right through an object. It can be difficult to see what's what. (A stewewoeuld

help a little.)

Chapter 8 November 30, 1999 page 1



Figure 8.1. A wire-frame rendering of a scene.

Figure 8.2 makes a significant improvement by not drawing any edges that lie behind a face. We
can call this a “wire-frame with hidden surface removal” rendering. Even though only edges are
drawn the objects now look solid and it is easy to tell where one stops and the next begins. Notice
that some edges simply end abruptly as they slip behind a face.

Figure 8.2. Wire-frame view with hidden surfaces removed.

(For the curious: This picture was made using OpenGL with its depth buffer enabledchanesh
object the faces were drawn in white usitigwMesh (), and then the edges were drawn in black
usingdrawEdges (). Both routines were discussed in Chapter 6.)

The next step in the hierarchy produces pictures where objects appear to be “in a scene”,
illuminated by some light sources. Different parts of the object reflect different amounts of light
depending on the properties of the surfaces involved, and on the positions of the sources and the
camera’s eye. This requires computing the brightness or color of each fragment rathevitigan ha
the user choose it. The computation requires the use of some shading model thatetethem

proper amount of light that is reflected from each fragment.

Figure 8.3 shows a scene modeled with polygonal meshes: a buckyball rests atop two cylinders, and
the column rests on a floor. Part a shows the wire-frame version, and part b shows a shiatled vers
(with hidden surfaces removed). Those faces aimed toward the light source appear brighter than
those aimed away from the source. This picture slilavshading: a calculation of how much

light is scattered from each face is computed at a single point, so all points on a face are rendered
with the same gray level.

Chapter 8 November 30, 1999 page 2



a).wire-frame b). flat shaded

Figure 8.3. A mesh approximation shaded with a shading model. a). wire-frame view b). fla
shading,

The next step up is of course to use color. Plate 22 shows the same scene where the objects are
given different colors.

In Chapter 6 we discussed building a mesh approximation to a smoothly curved object. A picture of
such an object ought to reflect this smoothness, showing the smooth “underlying surface” rather

than the individual polygons. Figure 8.4 show the scene renderedsusingh shading (Plate 23

shows the colored version.) Here different points of a face are drawn vi@tredifgray levels

found through an interpolation scheme knowiGasiraud shading The variation in gray levels is

much smoother, and the edges of polygons disappear, giving the impression of a smooth, rather than
a faceted, surface. We examine Gouraud shading in Section 8.3.

Figure 8.4. The scene rendered with smooth shading.

Highlights can be added to make objects look shiny. Figure 8.5 show the sceppewiitar light
components added. (Plate 24 shows the colored version.) The shinier an object @ethe m
localized are its specular highlights, which often make an object appear to be made friom plast

Figure 8.5. Adding specular highlights.

Another effect that improves the realism of a picture is shadowing. Figure 8.6 show thalsoea
with shadows properly rendered, where one object casts a shadow onto a neighboring object. We
discuss how to do this in Section 8.6.

Figure 8.6. The scene rendered with shadows.

Adding texture to an object can produce a big step in realism. Figure 8.7 (and Plate 25) show the
scene with different textures “painted” on each surface. These textures can make the various
surfaces appear to made of some material such as wood, marble, or copper. And images can be
“wrapped around” an object like a decal.

Figure 8.7. Mapping textures onto surfaces.

There are additional techniques that improve realism. In Chapter 14 we study ray tracing in depth.
Although raytracing is a computationally expensive approach, it is easy to program, and produces
pictures that show proper shadows, mirror-like reflections, and the passage of light through
transparent objects.

In this chapter we describe a number of methods for rendering scenes with greater reafissh. We

look at the classical lighting models used in computer graphics that make an object apeehinbat

light from some light sources, and see how to draw a polygonal mesh so that it appears to have a
smoothly curved surface. We then examine a particular hidden surface removal method - the one
that OpenGL uses - and see how it is incorporated into the rendering process. (Chexaenihds

a number of other hidden surface removal methods.) We then examine techniques for drawing
shadows that one object casts upon another, and for adding texture to each surface to make it appear
to be made of some particular material, or to have some image painted on it. We also examine
chrome mapping and environment mapping to see how to make a local scene appear to be

imbedded in a more global scene.

8.2. Introduction to Shading Models.
The mechanism of light reflection from an actual surface is very complicated, and it depends on
many factors. Some of these are geometric, such as the relative directions of the light source, the

Chapter 8 November 30, 1999 page 3



observer's eye, and the normal to the surface. Others are related to the characteristics of the surface,
such as its roughness, and color of the surface.

A shading model dictates how light is scattered or reflected from a surface. We shall examine some
simple shading models here, focusing on achromatic Wgtitromatic light has brightness but no

color; it is only a shade of gray. Hence it is described by a single value: int&dsishall see how

to calculate the intensity of the light reaching the eye of the camera from each portion of the object.
We then extend the ideas to include colored lights and colored objects. The computations are almost
identical to those for achromatic light, except that separate intensities of red, green, and blue
components are calculated.

A shading model frequently used in graphics supposes that two types of light sources illuminate the
objects in a scene: point light sources antbient light. These light sources “shine” on the various
surfaces of the objects, and the incident light interacts with the surface in three different ways:

Some is absorbed by the surface and is converted to heat;
Some is reflected from the surface;
Some is transmitted into the interior of the object, as in the case of a piece of glass.

If all incident light is absorbed, the object appears black and is knowhlaskabody. If all is
transmitted, the object is visible only through the effects of refraction, which we shall discuss in
Chapter 14.

Here we focus on the part of the light that is reflected or scattered from the surface. Some amount
of this reflected light travels in just the right direction to reach the eye, causing the object to be
seen. The fraction that travels to the eye is highly dependent on the geometry of the situation. We
assume that there are two types of reflection of incident light: diffuse scatteringesmndibs

reflection.

» Diffuse scattering occurs when some of the incident light slightly penetrates the surface and is
re-radiated uniformly in all directions. Scattered light interacts strongly with the surface, and so
its color is usually affected by the nature of the surface material.

* Specular reflectionsare more mirror-like and are highly directional: Incident light does not
penetrate the object but instead is reflected directly from its outer surface. This gives rise to
highlights and makes the surface look shiny. In the simplest model for specular light the
reflected light has the same color as the incident light. This tends to heakeaterial look like
plastic. In a more complex model the color of the specular light varies over the highlight,
providing a better approximation to the shininess of metal surfaces. We discuss both nnodels fo
specular reflections.

Most surfaces produce some combination of the two types of reflection, depending on surface
characteristics such as roughness and type of material. We say that thehtiotaflected from the
surface in a certain direction is the sum of the diffuse component and the specular component. For
each surface point of interest we compute the size of each component that reaches the eye.
Algorithms are developed next that accomplish this.

8.2.1. Geometric Ingredients for Finding Reflected Light.

On the outside grows the furside, on the inside grows the skinside;
So the furside is the outside, and the skinside is the inside.
Herbert George Ponting, The Sleeping Bag

We need to find three vectors in order to compute the diffuse and specular components. &igure 8.
shows the three principal vectors required to find the amount of light that reaches the eye from a
point P.

Figure 8.8. Important directions in computing reflected light.

1. The normal vectom, to the surface &.

Chapter 8 November 30, 1999 page 4



2. The vector from P to the viewer's eye.
3. The vectos from P to the light source.

The angles between these three vectors form the basis for computing light intensities. These angles
are normally calculated using world coordinates, because some transformations (such as the
perspective transformation) do not preserve angles.

Each face of a mesh object has two sides. If the object is solid one is usually the “inside” and one is
the “outside”. The eye can then see only the outside (unless the eye is inside the object!), and it is
this side for which we must compute light contributions. But for some objects, suchametihbox

of Figure 8.9, the eye might be able to see the inside of the lid. It depends on the angle between the
normal to that sidem,, and the vector to the eye, If the angle is less than 9his side is visible.

Since the cosine of that angle is proportional to the dot pradtngt the eye can see this side only
if vxn, > 0.

Figure 8.9. Light computations are made for one side of each face.

We shall develop the shading model for a given side of a face. If that side of the face is “turned
away” from the eye there is normally no light contribution. In an actual applicationntieriey
algorithm must be told whether to compute light contributions from one side or both sides of a
given face. We shall see that OpenGL supports this.

8.2.2. Computing the Diffuse Component.

Suppose that light falls from a point source onto one side of a facet (a small piece of a surface). A fraction
of it is re-radiated diffusely in all directions from this side. Some fraction of the ratedddart reaches

the eye, with intensity w denoted hy How doed, depend on the directioms, v, ands?

Because the scattering is uniform in all directions, the orientation of the Facelative to the eye

is not significant. Thereforé, is independent of the angle betweerandv (unlessy Xm <0,
whereupor, is zero.) On the other hand, the amount of light that illuminates thed@esdepend

on the orientation of the facet relative to the point source: It is proportional to the area of the facet
that it sees, that is, the area subtended by a facet.

Figure 8.10a shows in cross section a point source illuminating aSadetnm is aligned withs.

In Figure 8.10b the facet is turned partially away from the light source throughcaigie area
subtended is now onlyoqqg) as much as before, so that the brightnesSisfreduced by this same
factor. This relationship between brightness and surface orientation is oftenLeaiibdrt's law.
Notice that forg near 0, brightness varies only slightly with angle, because the cosine changes
slowly there. Asy approaches 90 however, the brightness falls rapidly to 0.

Figure 8.10. The brightness depends on the area subtended.

Now we know thatogq) is the dot product between normalized versions ahdm. We can
therefore adopt as the strength of the diffuse component:

sSXm
sr d

Is{|m]

Iy, =

In this equationl_ is the intensity of the light source, ands thediffuse reflection coefficient
Note that if the facet is aimed away from the eye this dot product is negative and wetaant
evaluate to 0. So a more precise computation of the diffuse component is:

SXm
|s||m]

I, =1sr 4 max (8.1)

Chapter 8 November 30, 1999 page 5



This max term might be implemented in code (using Weetor3 methoddot () andlength () -
see Appendix 3) by:

double tmp = s.dot(m); // form the dot product
double value = (tmp<0) ? 0 : tmp/(s.length() * m.length());

Figure 8.11 shows how a sphere appears when it reflects diffuse dighity feflection coefficients:

0, 0.2, 0.4, 0.6, 0.8, and 1. In each case the source intensity is 1.0 and theubackgemsity is set
to 0.4. Note that the sphere is totally black wheis 0.0, and the shadow in its bottom half (where
the dot product above is negative) is also black.

Figure 8.11. Spheres with various reflection coefficients shaded with diffuse light.
(file: fig8.11.bmp)

In reality the mechanism behind diffuse reflection is much more complex than the simple model we
have adopted here. The reflection coefficiendepends on the wavelength (color) of the incident

light, the angley, and various physical properties of the surface. But for simplicity and to reduce
computation time, these effects are usually suppressed when rendering images. A “reasonable”
value forr , is chosen for each surface, sometimes by trial and error according to the realism
observed in the resulting image.

In some shading models the effect of distance is also included, although it is somewhat
controversial. The light intensity falling on facgin Figure 8.10 from the point source is known to
fall off as the inverse square of the distance betvsemd the source. But experiments have shown
that using this law yields pictures with exaggerated depth effects. (What is more, it is sometimes
convenient to model light sources as if they lie “at infinity”. Using an inverseedaa in such a
case would quench the light entirely!) The problem is thought to be in the model: We model light
sources as point sources for simplicity, but most scenes are actually illuminated by additional
reflections from the surroundings, which are difficult to model. (These effects areduogether

into an ambient light component.) It is not surprising, therefore, that stricteamtieeto a physical

law based on an unrealistic model can lead to unrealistic results.

The realism of most pictures is enhanced rather little by the introduction of a distance term. Some
approaches force the intensity to be inversely proportional to the distance betwegs dinel the

object, but this is not based on physical principles. It is interesting to experimiesiuait effects,

and OpenGL provides some control over this effect, as we see in Section 8.2.9, but we don't include
a distance term in the following development.

8.2.3. Specular Reflection.

Real objects do not scatter light uniformly in all directions, and so a specular component is added to
the shading model. Specular reflection causes highlights, which can add sigfyificahe realism

of a picture when objects are shiny. In this section we discuss a simple model fdrathiehef

specular light due to Phong [Phong 1975]. It is easy to apply and OpenGL supports a good
approximation to it. Highlights generated by Phong specular light give an object a “plastic-like”

Chapter 8 November 30, 1999 page 6



appearance, so the Phong model is good when you intend the object to be made of shiny plastic or
glass. The Phong model is less successful with objects that are supposed to have a shiny metallic
surface, although you can roughly approximate them with OpenGL by careful choices of certain
color parameters, as we shall see. More advanced models of specular light nadeviedeped that

do a better job of modeling shiny metals. These are not supported directly by OpenGL'’s rendering
process, so we defer a detailed discussion of them to Chapter 14 on ray tracing.

Figure 8.12a shows a situation where light from a source impinges on a surface and is reflected in
different directions. In thhong modelwe discuss here, the amount of light reflected is greatest in
the direction of perfect mirror reflection, where the angle of incidengeequals the angle of

reflection. This is the direction in which all light would travel if the surface were a perfect mirror.

At other near-by angles the amount of light reflected diminishes rapidly, as indicated by the relative
lengths of the reflected vectors. Part b shows this in terms of a “beam pattern” familiar in radar
circles. The distance fromto the beam envelope shows the relative strength of the light scattered
in that direction.

a). b o).

Figure 8.12. Specular reflection from a shiny surface.

Part ¢ shows how to quantify this beam pattern effect. We know from Chapter 5 that the direction
of perfect reflection depends on bathnd the normal vecton to the surface, according to:

(sxm)

r=-s+2——m (the mirror-reflection direction) (8.2)

mf

For surfaces that are shiny but not true mirrors, the amount of light reflected falls off as the angle
betweerr andv increases. The actual amount of falloff is a complicated functidnhaft in the

Phong model it is said to vary as some pofagfrthe cosine of, that is, according tas(f))', in
whichf is chosen experimentally and usually lies between 1 and 200.

Figure 8.13 shows how this intensity function varies Witbr different values of. Asf increases,
the reflection becomes more mirror-like and is more highly concentrated along thedireét
perfect mirror could be modeled usihg ¥, but pure reflections are usually handled in a different
manner, as described in Chapter 14.

similar to old15.14

Figure 8.13. Falloff of specular light with angle.

Using the equivalence abgf) and the dot product betweemndv (after they are normalized), the
contributionl, due to specular reflection is modeled by

- rov '

|Sp s mxpl (8.3)

where the new term, is thespecular reflection coefficient.Like most other coefficients in the
shading model, it is usually determined experimentally. (As with the diffuse tethe dot product

r - vis found to be negativé, is set to zero.)

A boost in efficiency using the “halfway vector”.It can be expensive to compute the specular
term in Equation 8.3, since it requires first finding vectand normalizing it. In practice an
alternate term, apparently first described by Blinn [blinn77], is used to speed up computation.
Instead of using the cosine of the angle betweandv, one finds a vector halfway betwegand

v, that is,h = s+ v, as suggested in Figure 8.14. If the normal to the surface were orienteth along
the viewer would see the brightest specular highlight. Therefore the abgtereerm andh can be
used to measure the falloff of specular intensity that the viewer sees. Thé &ngtd the same &s

(in factb is twicef if the various vectors are coplanar - see the exercises), but this differerme can
compensated for by using a different value of the expohgifthe specular term is not based on
physical principles anyway, so it is at least plausible that our adjustment to it yields acceptable

Chapter 8 November 30, 1999 page 7



results.) Thus it is common practice to base the specular tecaodd) using the dot product of
andm:

Figure 8.14. The halfway vector.

h m ' _
|l =1 smaxQ, —x— ) {adjusted specular term} (8.4)

Ihl Im]

Note that with this adjustment the reflection vectoeed not be found, saving computation time.
In addition, if both the light source and viewer are very remoteghedv are constant over the
different faces of an object, soneed only be computed once.

Figure 8.15 shows a sphere reflecting different amounts of specular light. The reflectionergeffici
r . varies from top to bottom with values 0.25, 0.5, and 0.75, and the expweeies from left to

right with values 3, 6, 9, 25, and 200. (The ambient and diffuse reflection coefficients ard 0.1 an
0.4 for all spheres.)

Figure 8.15. Specular reflection from a shiny surface.

The physical mechanism for specularly reflected light is actually much more comptirartethe
Phong model suggests. A more realistic model makes the speculaiaefteefficient dependent

on both the wavelength (i.e. the color) of the incident light and the angle of incidepoghe

angle between vectossandm in Figure 8.10) and couples it to a “Fresnel term” that describes the
physical characteristics of how light reflects off certain classes of surfaterials. As mentioned,
OpenGL is not organized to include these effects, so we deferrfiditreission of them until

Chapter 14 on ray tracing, where we compute colors on a point by pointamisng a shading
model directly.

Practice Exercises.

8.2.1. Drawing Beam Patterns.Draw beam patterns similar to that in Figure 8.12 for the dases
1,f=10, and = 100.

8.2.2. On the halfway vector By examining the geometry displayed in Figure 8.14, showttkat
2f if the vectors involved are coplanar. Show that this is not so if the vectorsraceplanar. See
also [fisher94]

8.2.3. A specular speed ugschlick [schlick94] has suggested an alternative to the exponemtiatio
required when computing the specular term.Retenote the dot product®/ /|r [ jn Equation

8.3. Schlick suggests replaciBywith 2, which is faster to compute. Plot these two functions

f-forD ’

for values oD in [0,1] for various values dfand compare them. Pay particular attention to values
of D near 1, since this is where specular highlights are brightest.

Chapter 8 November 30, 1999 page 8



8.2.4. The Role of Ambient Light.

The diffuse and specular components of reflected light are found by simplifying the “rules” by
which physical light reflects from physical surfaces. The dependence of these components on the
relative positions of the eye, model, and light sources greatly improves the realigictof@ over
renderings that simply fill a wireframe with a shade.

But our desire for a simple reflection model leaves us with far from perfect renderings of a scene.
As an example, shadows are seen to be unrealistically deep and harsh. To soften these shadows, we
can add a third light component called “ambient light.”

With only diffuse and specular reflections, any parts of a surface that are shadowed fromtthe p
source receive no light and so are drawn black! But this is not our everyday experience. &he scen
we observe around us always seem to be bathed in some soft non-directional ligighTarsives

by multiple reflections from various objects in the surroundings and from light sources that populate
the environment, such as light coming through a window, fluorescent lamps, and the like. But it
would be computationally very expensive to model this kind of light precisely.

Ambient Sources and Ambient Reflections

To overcome the problem of totally dark shadows, we imagine that a uniform “background glow”
calledambient light exists in the environment. This ambient light source is not situated at any
particular place, and it spreads in all directions uniformly. The source is assigned an iftensity,
Each face in the model is assigned a value famtbient reflection coefficient r, (often this is

the same as the diffuse reflection coefficieg), and the ternh.r_ is simply added to whatever

diffuse and specular light is reaching the eye from each paintthat facel, andr, are usually

arrived at experimentally, by trying various values and seeing what looks best. Too little ambient
light makes shadows appear too deep and harsh; too much makes the picture look washed out and
bland.

Figure 8.16 shows the effect of adding various amounts of ambient light to the diffuse light

reflected by a sphere. In each case both the diffuse and ambient sources have inteanitytiie0,

diffuse reflection coefficient is 04. Moving from left to right the ambient reflection caefiitakes

on values 0.0, 0.1, 0.3, 0.5, and 0.7. With only a modest amount of ambient light the harsh shadows
on the underside of the sphere are softened and look more realistic. Too much ambaitref]

on the other hand, suppresses the shadows excessively.

Figure 8.16. On the effect of ambient light.

8.2.5. Combining Light Contributions.
We can now sum the three light contributions - diffuse, specular, and ambient - to form the total
amount of lightl that reaches the eye from point

| =1,r, +l 44 lambert+ I r .~ phond (8.5)
where we define the values
sSxm h>xm
lambert= maxQ —? and phong max(O,—? (8.6)
Elly [h{|m

| depends on the various source intensities and reflection coefficients, as well as on the relative
positions of the poin®, the eye, and the point light source. Here we have given different ngmes,

Chapter 8 November 30, 1999 page 9



andl, to the intensities of the diffuse and specular components of the light source, because
OpenGL allows you to set them individually, as we see later. In practice they usually heaméhe
value.

To gain some insight into the variationlafith the position oP, consider again Figure 8.10is
computed for different point8 on the facet shown. The ambient component shows no variation
over the facetmn is the same for aP on the facet, but the directions of betAndv depend orP.

(For instances = S - P whereSis the location of the light source. How daedepend orP and the
eye?) If the light source is fairly far away (the typical casaljjl change only slightly aP

changes, so that the diffuse component will change only slightly for different poiftss is

especially true whesandm are nearly aligned, as the valueco) changes slowly for small

angles. For remote light sources, the variation in the direction of the halfway késtalso slight

asP varies. On the other hand, if the light source is close to the facet, there can be substantial
changes irs andh asP varies. Then the specular term can change significantly over the facet, and
the bright highlight can be confined to a small portion of the facet. This effect is increased when the
eye is also close to the facet -causing large changes in the directiermiofl when the exponeht

is very large.

Practice Exercise 8.2.4. Effect of the Eye DistancBescribe how much the various light
contributions change dsvaries over a facet when a). the eye is far away from the facet and b).
when the eye is near the facet.

8.2.6. Adding Color.

It is straightforward to extend this shading model to the case of colored light refleotingdtored
surfaces. Again it is an approximation born from simplicity, but it offers reasonable results and is
serviceable.

Chapter 12 provides more detail and background on the nature of color, but as we have seen
previously colored light can be constructed by adding certain amounts of red, green, and blue light.
When dealing with colored sources and surfaces we calculate each color component individually,
and simply add them to form the final color of reflected light. So Equation 8.5 is appked th

times:

|, =1,.r, +lyry lambert+ I, r .~ phond

ar spr’ s

lg =1 of o 1yl & lambert+ 1 r .~ phong (8.7)

ly =1l a1 af oo lambert+ |y o phond

(wherelambertandphongare given in Equation 8.6) to compute the red, green, and blue
components of reflected light. Note that we say the light sources have three “typelsiof ¢
ambient =, I, 1,), diffuse = (,, 1, I,,), and specular 4 (, I_, I, ). Usually the diffuse and
specular light colors are the same. Note also thdathbertandphongterms do not depend on
which color component is being computed, so they need only be computed once. To pursue this
approach we need to define nine reflection coefficients:

ambient reflection coefficients: r_,r_, andr ,
diffuse reflection coefficients:, r,,r,, andr,
specular reflection coefficients: ,r_, r, andr,

The ambient and diffuse reflection coefficients are based on the color of the surface itself. By
“color” of a surface we mean the color that is reflected from it when the illuminatiamtislight:

a surface is red if it appears red when bathed in white light. If bathed in some other color it can
exhibit an entirely different color. The following examples illustrate this.

Example 8.2.1. The color of an objectf we say that the color of a sphere is 30% red, 45% green,
and 25% blue, it makes sense to set its ambient and diffuse reflection coefficier8k 1@ @K,
0.2%X), whereK is some scaling value that determines the overall fraction of incident light that is
reflected from the sphere. Now if it is bathed in white light having equal amounts of rexql, gnel
blue (. =1,,=1,=1) the individual diffuse components have intensitjes0.3K I, |, = 0.45K I, I,

= 0.25K I, so as expected we see a color that is 30% red, 45% green, and 25% blue.

Chapter 8 November 30, 1999 page 10



Example 8.2.2. A reddish object bathed in greenish lighBuppose a sphere has ambient and

diffuse reflection coefficients (0.8, 0.2, 0.1), so it appears mostly red when lratlbite light.

We illuminate it with a greenish light+ (0.15, 0.7, 0.15). The reflected light is then given by

(0.12, 0.14, 0.015), which is a fairly even mix of red and green, and would appear yellowish (as we
discuss further in Chapter 12).

The color of specular light.Because specular light is mirror-like, the color of the specular
component is often the same as that of the light source. For instance, it teraofetperience

that the specular highlight seen on a glossy red apple when illuminated by a yellow light is yellow
rather than red. This is also observed for shiny objects made of plastic-like material. To create
specular highlights for a plastic surface the specular reflection coeffiaigntg, andr, used in
Equation 8.7 are set to the same value rgaso that the reflection coefficients are ‘gray’ in nature
and do not alter the color of the incident light. The designer might clhhges@.5 for a slightly

shiny plastic surface, ar; = 0.9 for a highly shiny surface.

Objects made of different materials.

A careful selection of reflection coefficients can make an object appear to beofreadpecific
material such as copper, gold, or pewter, at least approximately. McReynolds doed Blyt
[mcReynolds97] have suggested using the reflection coefficients giveigure 8.17. Plate ???
shows several spheres modelled using these coefficients. The sphamgsear to be made of

different materials. Note that the specular reflection coefficients heeedi red, green, and blue

components, so the color of specular light is not simply that of the incident light. dReyolds

and Blythe caution users that, because OpenGL's shading algonitonporates a Phong specular

component, the visual effects are not completely realistic. We shall revisit the issuapiteICL4

and describe the more realistic Cook-Torrance shading approach..

Material ambient: r_, r diffuse: r,, r . & specular: r exponent: f
Black 0.0 0.01 0.50 32
Plastic 0.0 0.01 0.50
0.0 0.01 0.50
Brass 0.329412 0.780392 0.992157 27.8974
0.223529 0.568627 0.941176
0.027451 0.113725 0.807843
Bronze 0.2125 0.714 0.393548 25.6
0.1275 0.4284 0.271906
0.054 0.18144 0.166721
Chrome 0.25 0.4 0.774597 76.8
0.25 0.4 0.774597
0.25 0.4 0.774597
Copper 0.19125 0.7038 0.256777 12.8
0.0735 0.27048 0.137622
0.0225 0.0828 0.086014
Gold 0.24725 0.75164 0.628281 51.2
0.1995 0.60648 0.555802
0.0745 0.22648 0.366065
Pewter 0.10588 0.427451 0.3333 9.84615
0.058824 0.470588 0.3333
0.113725 0.541176 0.521569
Silver 0.19225 0.50754 0.508273 51.2
0.19225 0.50754 0.508273
0.19225 0.50754 0.508273
Polished 0.23125 0.2775 0.773911 89.6
Silver 0.23125 0.2775 0.773911
0.23125 0.2775 0.773911
Figure 8.17. Parameters for common materials [mcReynolds97].
Chapter 8 November 30, 1999 page 11




Plate 26. Shiny spheres made of different materials.

8.2.7. Shading and the Graphics pipeline.

At which step in the graphics pipeline is shading performed? And how is it done? Figure 8.18
shows the pipeline again. The key idea is that the vertices of a mesh are sent down the pipeline
along with their associated vertex normals, and all shading calculatiodsreg®rvertices

(Recall that thelraw () method in théMlesh class sends a vertex normal along with each vertex, as
in Figure 6.15.)

Figure 8.18. The graphics pipeline revisited.

The figure shows a triangle with verticesv,, andv, being rendered. Vertex has the normal
vectorm, associated with it. These quantities are sent down the pipeline with calls such as:

glBegin(GL_POLYGON);
for(inti=0; i< 3; i++)

gINormal3f(norm([i].x, norm[i].y, norm([i].z);
glVertex3f(pt[i].x, pt[il.y, pt[i].z);

glEnd();

The Call togINormal3f () sets the “current normal vector”, which is applied to all vertices
subsequently sent usigdvertex3f (). It remains current until changed with another call to
gINormal3f (). For this code example a new normal is associated with each vertex.

The vertices are transformed by the modelview makfixeffectively expressing them in camera
(eye) coordinates. The normal vectors are also transformed, but vectors transform Igfifiemant
points. As shown in Section 6.5.3, transforming points of a surface by a Matexses the normal
m at any point to become the normifm on the transformed surface, whéfé is the transpose of
the inverse oM. OpenGL automatically performs this calculation on normal vectors.

As we discuss in the next section OpenGL allows you to specify various light sources and their
locations. Lights are objects too, and the light source positions are also transformed by the
modelview matrix.

So all quantities end up after the modelview transformation being expressed in camera coordinates.
At this point the shading model of Equation 8.7 is applied, and a color is “attached” to each vertex.
The computation of this color requires knowledge of veatgrs, andv, but these are all available

at this point in the pipeline. (Convince yourself of this).

Progressing farther down the pipeline, the pseudodepth term is created and the vertiassear
through the perspective transformation. The color information tags along with each vertex. The
clipping step is performed in homogeneous coordinates as described earlier. This mayneltefr s
the vertices. Figure 8.19 shows the case where verte#fxhe triangle is clipped off, and two new
vertices,a andb, are created. The triangle becomes a quadrilateral. The color at each of the new
vertices must be computed, since it is needed in the actual rendering step.

Figure 8.19. Clipping a polygon against the (warped) view volume.

Chapter 8 November 30, 1999 page 12



The color at each new vertex is usually found by interpolation. For instance, suppose that the color
atv, is (,, 9, b,) and the color at, is (,, g,, b,). If the pointa is 40% of the way fromy, to v, the
color associated with is a blend of 60% ofr{, g,, b,) and 40% ofI(, g,, b,). This is expressed as

color at point a= (lerp(r,, r,, 0.4),lerp(g,, 9,, 0.4),lerp(b,, b,, 0.4)) (8.8)

where we use the convenient functlerp() (short for “linear interpolation” - recall “tweening” in
Section 4.5.3) defined by:

lerp(G, H, f) =G+ H - G)f (8.9)
Its value lies at fractiohof the way fromG to H.1

The vertices are finally passed through the viewport transformation wherer¢heyapped into

screen coordinates (along with pseudodepth which now varies between 0 and 1). The quadrilateral
is then rendered (with hidden surface removal), as suggested in Figure 8.19. We shall say much
more about the actual rendering step.

8.2.8. Using Light Sources in OpenGL.

OpenGL provides a number of functions for setting up and using light sources, as well as for
specifying the surface properties of materials. It can be daunting to absorb all of the mahie possi
variations and details, so we describe the basics here. In this section we disctsgstallish
different kinds of light sources in a scene. In the next section we look at ways to ciegdbeer
reflective properties of the surfaces of an object.

Creating a light source.

OpenGL allows you to define up to eight sources, which are referred to through names
GL_LIGHTO, GL_LIGHT1, etc. Each source is invested with various properties, andmust
enabled. Each property has a default value. For example, to create a source located at (3, 6, 5) in
world coordinates, use

GLfloat myLightPosition[] = {3.0, 6.0, 5.0, 1.0};
glLightfv(GL_LIGHTO, GL_POSITION, myLightPosition);
glEnable(GL_LIGHTING); // enable
glEnable(GL_LIGHTO); // enable this particular source

The arraymyLightPosition [l (use any name you wish for this array) specifies the location of
the light source, and is passedytbightfv () along with the nam&L_LIGHTO to attach it to the
particular sourc&L LIGHTO.

Some sources, such as a desk lamp, are “in the scene”, whereas others, like the sun, are infinitely
remote. OpenGL allows you to create both types by using homogeneous coordinates to specify light
position:

(X, ¥,z 1) : alocal light source at the positiony, 2)
(X, ¥, z, 0): a vector to an infinitely remote light source in the directioy, @)

Figure 8.20 shows a local source positioned at (0, 3, 3, 1) and a remote source “located” along
vector (3, 3, 0, 0). Infinitely remote light sources are often cali@@c¢tional”. There are
computational advantages to using directional light sources, since the disdctite calculations

of diffuse and specular reflectionsdsnstantfor all vertices in the scene. But directional light
sources are not always the correct choice: some visual effects are properly achieved only when a
light source is close to an object.

1In Section 8.5 we discuss replacing linear interpolation by “hyperbolic interpolation” as a more accurate way
to form the colors at the new vertices formed by clipping.

2 Here and elsewhere the tyji@at  would most likely serve as well @& float . But usingGLfloat

makes your code more portable to other OpenGL environments.

Chapter 8 November 30, 1999 page 13



Figure 8.20. A local source and an infinitely remote source.

You can also spell out different colors for a light source. OpenGL allows you to assftgrentli

color to three “types of light” that a source emits: ambient, diffuse, and specular. It may seem
strange to say that a source emits ambient light. It is still treated as in Equation 8.7: a global omni-
directional light that bathes the entire scene. The advantage of attaching it to a light source is that it
can be turned on and off as an application proceeds. (OpenGL also offers a truly ambiemt light, n
associated with any source, as we discuss later in connection with “lighting models”.)

Arrays are defined to hold the colors emitted by light sources, and they are passed to
glLightfv ().

GLfloat amb0[] = {0.2, 0.4, 0.6,
GLfloat diffo[] = {0.8, 0.9, 0.5, 1.0},
GLfloat specO[] ={ 1.0, 0.8, 1.0, 1.0};

glLightfv(GL_LIGHTO, GL _AMBIENT, amb0); // attach them to LIGHTO
glLightfv(GL_LIGHTO, GL_DIFFUSE, diff0);

glLightfv(GL_LIGHTO, GL_ SPECULAR spec0);

0.6, 1.0}; // define some colors
5,

Colors are specified in so-call®&GBA format, meaning red, green, blue, and “alpha”. The alpha
value is sometimes used for blending two colors on the screen. We discuss it in Chapteodf. For
purposes here it is normally 1.0.

Light sources have various default values. For all sources:
default ambient (0, 0, O, 1); A dimmest possible: black
For light source IGHTO:

default diffuse= (1, 1, 1, 1); A Drightest possible: white
default specular (1, 1, 1, 1); A brightest possible: white

whereas for the other sources the diffuse and specular values have defaults of black.

Spotlights.

Light sources arpoint sourceshy default, meaning that they emit light uniformly in all directions.
But OpenGL allows you to make them into spotlights, so they emit light in a restricted set of
directions. Figure 8.21 shows a spotlight aimed in direatjomith a “cutoff angle” ofa.

No light is seen at points lying outside the cutoff cone. For vertices sithaslie inside the

cone, the amount of light reachiRgs attenuated by the factaos” (b ) whereb is the angle

betweerd and a line from the source B ande is an exponent chosen by the user to give the
desired fall-off of light with angle.

Figure 8.21. Properties of a spotlight.

The parameters for a spotlight are set ugihgghtf () to set a single value, agtLightfv ()
to set a vector:

glLightf(GL_LIGHTO, GL_SPOT_CUTOFF, 45.0); // a cutoff angle of 45 °

glLightf(GL_LIGHTO,GL_SPOT_EXPONENT, 4.0); // e=4.0
GLfloat dir[] = {2.0, 1.0, -4.0}; // the spotlight’s direction
glLightfv(GL_LIGHTO,GL_SPOT_DIRECTION, dir);

The default values for these parametersdarg(0,0,-1),a = 180, ande = 0, which makes a source
an omni-directional point source.

Attenuation of light with distance.

OpenGL also allows you to specify how rapidly light diminishes with distance from a source.
Although we have downplayed the importance of this dependence, it can be interesting to

Chapter 8 November 30, 1999 page 14



experiment with different fall-off rates, and to fine tune a picture. OpenGL attenbatsisength
of a positional light source by the following attenuation factor:

atten= L (8.11)

k. + kD +k,D?

wherek,, k, andk, are coefficients anD is the distance between the light’s position and the vertex
in question. This expression is rich enough to allow you to model any combination of constant,
linear, and quadratic (inverse square law) dependence on distance from a source. Thetgrparame
are controlled by function calls:

glLightf(GL_LIGHTO, GL_CONSTANT_ATTENUATION, 2.0);

and similarly forGL_LINEAR_ATTENUATION andGL_QUADRATIC_ATTENUATION.The
default values ark. = 1,k = 0, andk, = 0, which eliminate any attenuation.

Lighting model.
OpenGL allows three parameters to be set that specify general rules for applying the reloaléiing
These parameters are passed to variations of the fumtightModel

a). The color of global ambient light You can establish a global ambient light source in a scene
that is independent of any particular source. To create this light, specify itaiswig:

GLfloat amb[] ={0.2, 0.3, 0.1, 1.0};
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, amb);

This sets the ambient source to the color (0.2, 0.3,0.1). The default valug GZp®22, 1.0), so
this ambient light is always present unless you purposely alter it. This makes objeatsrie a s
visible even if you have not invoked any of the lighting functions.

b). Is the viewpoint local or remote?OpenGL computes specular reflections using the “halfway
vector’h = s+ v described in Section 8.2.3. The true directivaadv are normally different at
each vertex in a mesh (visualize this). If the light source is directionasfeaonstant, but still
varies from vertex to vertex. Rendering speed is increaseid ihade constant for all vertices. This
is the default: OpenGL uses= (0, 0, 1), which points along the positive z-axis in camera
coordinates. You can force the pipeline to compute the true valuookach vertex by executing:

glLightModeli(GL_LIGHT _MODEL_LOCAL_VIEWER, GL_TRUE);

c). Are both sides of a polygon shaded properlyZach polygonal face in a model has two sides.
When modeling we tend to think of them as the “inside” and “outside” surfaces. The convention is
to list the vertices of a face in counter-clockwise (CCW) order as seen from outside the object. Most
mesh objects represent solids that enclose space, so there is a well defined inside andasutside. F
such objects the camera can only see the outside surface of each face (assuming the camera is not
inside the object!). With proper hidden surface removal the inside surface of each fddeiis hi

from the eye by some closer face.

OpenGL has no notion of “inside” and “outside.” It can only distinguish between “front faces” and
“back faces”. A face is font face if its vertices are listed in counter-clockwise (CCW) order as

seen by the eyeFigure 8.22a shows the eye viewing a cube, which we presume was modeled using
the CCW ordering convention. Arrows indicate the order in which the vertices of each face are
passed to OpenGL (ingiBegin (GL POLYGON...; glEnd () block). For a space-enclosing

object all faces that are visible to the eye are therefore front faces, and OpenGL draws them

3 This attenuation factor is disabled for directional light sources, since they are infinitely remote.
4 You can reverse this sense wilfrontFace (GL _CVWY, which decrees that a face is a front face only if its
vertices are listed in clock-wise order. The defaulfiisontFace (GL CCW

Chapter 8 November 30, 1999 page 15



properly with the correct shading. OpenGL also draws the baclefdegghey are ultimately
hidden by closer front faces.

a). b).

Figure 8.22. OpenGL’s definition of a front face.

Things are different in part b, which shows a box with a face removed. Again arrows indicate the
order in which vertices of a face are sent down the pipeline. Now three of the visible faces are back
faces. By default OpenGL does not shade these properly. To coerce OpenGL to dshadipeg

of back faces, use:

glLightModeli(GL_LIGHT _MODEL_TWO_SIDE, GL_TRUE);

Then OpenGL reverses the normal vectors of any back-face so that they point toward the viewer,
and it performs shading computations properly. RepeRlcd RUEwith GL_FALSE (the default) to
turn off this facility.

Note: Faces drawn by OpenGL do not cast shadows, so the back faces receive the same light from a
source even though there may be some other face between them and the source.

Moving light sources.

Recall that light sources pass through the modelview matrix just as vertices do. Thagefsreah

be repositioned by suitable usegtRotated () andglTranslated (). The arrayposition

specified usinglLightfv(GL_LIGHTO, GL_POSITION, position) is modified by the
modelview matrix in effect at the tingdLightfv () is called. So to modify the light position with
transformations, and independently move the camera, imbed the light positioning command in a
push/pop pair, as in:

void display()
GLfloat position[] = {2, 1, 3, 1}; //initial light position

<.. clear color and depth buffers ..>
gIMatrixMode(GL_MODELVIEW);
glLoadldentity();
glPushMatrix();

glRotated(...); // move the light

glTranslated(...);

glLightfv(GL_LIGHTO, GL_POSITION, position);
glPopMatrix();

gluLookAt(...); // set the camera position
<.. draw the object ..>
glutSwapBuffers();

}

On the other hand, to have the light move with the camera, use:

GLfloat pos[] = {0,0,0,1};
gIMatrixMode(GL_MODELVIEW);
glLoadldentity();
glLightfv(GL_LIGHTO, GL_POSITION, position);// light at (0,0,0)
gluLookAt(...); // move the light and the camera
<.. draw the object ..>

This establishes the light to be positioned at the eye (like a minor’'s lamp), and the light moves with
the camera.

8.2.9. Working with Material Properties in OpenGL.

5 You can improve performance by instructing OpenGL to skip rendering of back faites, w
glCullFace (GL BACK; glEnable (GL CULL FACEB;

Chapter 8 November 30, 1999 page 16



You can see the effect of a light source only when light reflects off an object’s surface. OpenGL
provides ways to specify the various reflection coefficients that appear in Equatidiné@y7are set
with variations of the functioglMaterial ~ , and they can be specified individually for front faces
and back faces (see the discussion concerning Figure 8.22). For instance,

GLfloat myDiffuse[] = {0.8, 0.2, 0.0, 1.0};
gIMaterialfv(GL_FRONT, GL_DIFFUSE, myDiffuse);

sets the diffuse reflection coefficiemt,( r,, r,,) = (0.8, 0.2, 0.0) for all subsequently specified
front faces. Reflection coefficients are specified as a 4-tuple in RBGA format, just like a color. The
first parameter oflMaterialfv () can take on values:

GL FRONT: set the reflection coefficient for front faces
GL BACK set it for back faces
GL FRONTAND BACK set it for both front and back faces

The second parameter can take on values:

GL AMBIENT: set the ambient reflection coefficients

GL DIFFUSE: set the diffuse reflection coefficients

GL SPECULARset the specular reflection coefficients

GL AMBIENT AND DIFFUSE: set both the ambient and diffuse reflection coefficients to the same
values. This is for convenience, since the ambient and diffuse coefficientsaterschosen to be

the same.

GL _EMISSION: set the emissive color of the surface.

The last choice sets tlenissive colorof a face, causing it to “glow” in the specified color,
independent of any light source.

Putting it all together.
We now extend Equation 8.7 to include the additional contributions that OpenGL actually
calculates. The total red component is given by:

| =e +1_r_  +§ atten ~ spqt’ zarraﬁ larr - lambef  'kpr . phong V4
(8.12) |

Expressions for the green and blue components are similar. The emissivediglandl  is the
global ambient light introduced in the lighting model. The summation denotes that the ambient,
diffuse, and specular contributions of all light sources are summed. RethtBeurceatten is the
attenuation factor as in Equation 8.%pot is the spotlight factor (see Figure 8.21), tamdbert
andphong are the familiar diffuse and specular dot products. All of these terms must be
recalculated for each source.

Note: If I, turns out to have a value larger than 1.0, OpenGL clamps it to 1.0: the brightest any light
component can be is 1.0.

8.2.10. Shading of Scenes Specified by SDL.
The scene description language SDL introduced in Chapter 5 supports the loading of materia
properties into objects, so that they can be shaded properly. For instance,

light 345 .8.8 .8 ! bright white light at (3, 4, 5)

background 1 1 1 ! white background

globalAmbient .2 .2 .2 ! a dark gray global ambient light
ambient.2 .6 0

diffuse .8 .2. 1! red material

specular 1 1 1! bright specular spots — the color of the source
exponent 20 !set the Phong exponent

scale 4 4 4 sphere

describes a scene containing a sphere with material properties (see Equation 8.7):

Chapter 8 November 30, 1999 page 17



ambient reflection coefficients: (N Map Fa) = (-2, 0.6, 0),
diffuse reflection coefficients: Mo Mg T = (0.8, 0.2, 1.0),
specular reflection coefficients: rdrere =(1.0,1.0,1.0)
and Phong exponeft= 20.

sg! rs

The light source is given a color of (0.8, 0.8, 0.8) for both its diffuse and specular components.
There is a global ambient term,(l,, 1) = (0.2, 0.2, 0.2).

The current material properties are loaded into each objatt’s field at the time it is created (see
the end ofScene :: getObject () in Shape.cpp of Appendix 4). When an object draws itself

using itsdrawOpenGL () method, it first passes its material properties to OpenGLSkape::
tellMaterialsGL (0), so that at the moment it is actually drawn OpenGL has these properties in
its current state.

In Chapter 14 when raytracing we shall use each object’s material field in a similar way to acquire
the material properties and do proper shading.

8.3. Flat Shading and Smooth Shading.

Different objects require different shading effects. In Chapter 6 we modeled a variety of shapes
using polygonal meshes. For some, like the barn or buckyball, we want to see the individual faces in
a picture, but for others, like the sphere or chess pawn, we want to see the “underlying” surface that
the faces approximate.

In the modeling process we attached a normal vector to each vertex of each face. If a certain face is
to appear as a distinct polygon we attachsdmaenormal vector to all of its vertices; the normal

vector chosen is the normal direction to the plane of the face. On the other hand, if the face is
supposed to approximate an underlying surface we attach to each vertex the normal to the
underlying surface at that point.

We examine now how the normal vector information at each vertex is used to perform different

kinds of shading. The main distinction is between a shading method that accentuates the individual
polygons (flat shading) and a method that blends the faces to de-emphasize the edges between them
(smooth shading). There are two kinds of smooth shading, called Gouraud and Phong shading, and
we shall discuss both.

For both kinds of shading the vertices are passed down the graphics pipeline, shading calculations
are performed to attach a color to each vertex, and ultimately the vertices of the face are converted
to screen coordinates and the face is “painted” pixel by pixel with the appropriate color.

Painting a Face.

The face is colored using a polygon-fill routine. Filling a polygon is very simple, although fine
tuning the fill algorithm for highest efficiency can get complex. (See Chapter 10.) Here we look at
the basics, focusing on how the color of each pixel is set.

A polygon-fill routine is sometimes callediter, because it moves over the polygon pixel by pixel,
coloring each pixel as appropriate, as one would lay down tiles on a parquet floor. Spedifieally
pixels in a polygon are visited in a regular order, usually scan-line by scan-line fromttire tmt

the top of the polygon, and across each scan-line from left to right.

We assume here that the polygons of interest@mgex A tiler designed to fill only convex

polygons can be made highly efficient, since at each scan-line there is a single unbroken “run” of
pixels that lie inside the polygon. Most implementations of OpenGL exploit this and always fil
convex polygons correctly, but do not guarantee to fill non-convex polygons properly. See the
exercises for more thoughts on convexity.

Figure 8.23 shows an example where the face is a convex quadrilateral. The screen coordinates of
each vertex are noted. The lowest and highest points on the facgandy,,, respectively. The

tiler first fills in the row aty =y, (in this case a single pixel), then the ong gt 1, etc. At each
scan-line, say, in the figure, there is a leftmost pixe|,, and a rightmost . The tiler moves

from x, to X, placing the desired color in each pixel. So the tiler is implemented as a simple
double loop:

Chapter 8 November 30, 1999 page 18



Figure 8.23. Filling a polygonal face with color.

for (inty =y bot ;Y<=Y wp;y++t) [/ foreach scan-line
<..find x et and X right >
for (int x = x left ; X<=X gt ; X++)//fill across the scan-line

<.. find the color c for this pixel ..>
<.. put c into the pixel at (x, y) ..>

}

(We shall see later how hidden surface removal is easily accomplished within this double loop as
well.) The principal difference between flat and smooth shading is the manner mthéicolorc
is determined at each pixel.

8.3.1. Flat Shading.

When a face is flat (like the roof of a barn) and the light sources are quite thstaliffuse light
component varies little over different points on the roof [@ngbertterm in Equation 8.6 is nearly
the same at each vertex of the face). In such cases it is reasonable to use thmséonevary

pixel “covered” by the face. OpenGL offers a rendering mode in whielertkire face is drawn with
the same color. Although a color is passed down the pipeline as part okeohof the face, the
painting algorithm uses only one of them (usually that of the first vertex in the $acthe

command abovesfind the color ¢ for this pixel>, is not inside the loops but
instead appears just prior to the loops , setting the color of one of the vertices. (Using the same
color for every pixel tends to make flat shading quite fast.)

Flat shading is established in OpenGL using:
glShadeModel(GL_FLAT);
Figure 8.24 shows a buckyball and a sphere rendered using flat shading. The individual faces are

clearly visible on both objects. The sphere is modeled as a smooth object, but no smoothing is
taking place in the rendering, since the color of an entire face is set to that of only one vertex.

Figure 8.24. Two meshes rendered using flat shading.

Edges between faces actually appear more pronounced than they “are”, due to a phenomenon in the
eye known agateral inhibition , first described by Ernst Ma&hwWhen there is a discontinuity in
intensity across an object the eye manufactuiach band at the discontinuity, and a vivid edge

6 Ernst Mach (1838-1916), an Austrian physicist, whose early work strongly influenceddhedhe
relativity.

Chapter 8 November 30, 1999 page 19



is seen (as discussed further in the exercises). This exaggerates the polpgpihalf ‘mesh
objects rendered with flat shading.

Specular highlights are rendered poorly with flat shading, again because an entire face is filled with
a color that was computed at only one vertex. If there happens to be a large spetpderectd at

the representative vertex, that brightness is drawn uniformly over the entire face. If a specular
highlight doesn’t fall on the representative point, it is missed entirely. For this reasanisthittle
incentive for including the specular reflection component in the shading coimputat

8.3.2.Smooth Shading.

Smooth shading attempts to de-emphasize edges between faces by comprsreg awore points
on each face. There are two principal types of smooth shadingd &dluraud shading and Phong
shading [gouraud71, phong75]. OpenGL does only Gouraud shading, but we descrilbe¢hasth o

Gouraud shadingcomputes a different value offor each pixel. For the scanlineygf(in figure
8.23) it finds the color at the leftmost pixeblor by linear interpolation of the colors at the top
and bottom of the left edgeFor the scan-line at the color at the top isolor, and that at the
bottom iscolor,, socolore; would be calculated as (recall Equation 8.9):

colore = lerp(colory, colory, f) (8.13)

where fractiorf , given by

f= Ys = Yot
Ya~ Yoor

varies between 0 and 1 yasvaries fromy,. toy,. Note that Equation 8.13 involves three
calculations since each color quantity has a red, green, and blue componen

Similarly colorgy is found by interpolating the colors at the top and bottom of the right edge. The
tiler then fills across the scanline, linearly interpolating betveedor.; andcolor;gy to obtain the
color at pixelx:

X Kett
Xright = Xett

c(x) = lerp(colog,, colof,,, ) (8.14)

To increase efficiency this color is computed incrementally at each pixel. That is, there is a constant
difference between(x+1) andc(x), so

color,, - color

Xright = Kett

c(x+) =¥+

(8.15)

The increment is calculated only once outside of the innermost loop. In tecaodedthis looks like:

for (inty =y bott ;Y <=Y 1wp;y++) [/ for each scan-line
<.. find x et @nd X right ..>
<.. find color et andcolor gh ..>
colo.r inc = (color gt —color et M(X right —X et );
for (int x = x left , C = color left ;X <=X rgnt ; X++, ct=color inc )

<.. put c into the pixel at (x, y) ..>

7 We shall see later that, although colors are usually interpdiately as we do here, better results can be
obtained by using so-callétyperbolic interpolationFor Gouraud shading the distinction is minor; for texture
mapping it is crucial.

Chapter 8 November 30, 1999 page 20



Gouraud shading is modestly more expensive computationally than flat shadinguéshading is
established in OpenGL using:

glShadeModel(GL_SMOOTH);

Figure 8.25 shows a buckyball and a sphere rendered using Gouraud shading. The buckyball looks
the same as when it was flat shaded in Figure 8.24, because the same color is associated with each
vertex of a face, so interpolation changes nothing. But the sphere looks much smoother. There are
no abrupt jumps in color between neighboring faces. The edges of the faces (and the Mach bands)
are gone, replaced by a smoothly varying color across the object. Along the silhouette, however,
you can still see the bounding edges of individual faces.

Figure 8.25. Two meshes rendered using smooth shading. (file: fig8.25.bmp)

Why do the edges disappear with this technique? Figure 8.26a shows twé-fands;, that share
an edge. When renderifigthe colorsc, andc, are used, and when renderifighe colorsc,’ and
., are used. But since, equals:,’ there is an abrupt change in color at the edge along the scanline.

a). two faces abuting b). cross section: can see underlying surface

Figure 8.26. Continuity of color across a polygon edge.

Figure 8.26b suggests how this technique reveals the “underlying” surface approximated by the
mesh. The polygonal surface is shown in cross section, with veviicés etc. marked. The

imaginary smooth surface that the mesh supposedly represents is suggested as well. Properly
computed vertex normals,, m,, etc. point perpendicularly to this imaginary surface, so the normal
for “correct” shading is being used at each vertex, and the color thereby found is correct. The color
is then made to vary smoothly between vertices, not following any physical law but rather a simple
mathematical one.

Because colors are formed by interpolating rather than computing colors at every pixel, Gouraud
shading does not picture highlights well. Therefore, when Gouraud shading is used, one normally
suppresses the specular component of intensity in Equation 8.12. Highlights are pedtirces

using Phong shading, discussed next.

Phong Shading.

Greater realism can be achieved - particularly with regard to highlights on shiniselijgca

better approximation of the normal vector to the face at each pixel. This type of shading is called
Phong shading,after its inventor Phong Bui-tuong [phong75].

When computing Phong shading we find the normal veatteach poinobn the face and we apply
the shading model there to find the color. We compute the normal vector at each pixel by
interpolating the normal vectors at the vertices of the polygon.

Figure 8.27 shows a projected face, with the normal vernigns,, m,, andm, indicated at the four
vertices. For the scan-ling s shown the vectors_, andm_, are found by linear interpolation.
For instancem,, is found as

left right

Chapter 8 November 30, 1999 page 21



Figure 8.27. Interpolating normals.

Ys- Vs )

37 Vs
This interpolated vector must be normalized to unit length before its use in the shading formula.
Once m, and m,, are known, they are interpolated to form a normal vector atxealtmg the

scan-line. This vector, once normalized, is used in the shading calculation to form the color at that
pixel.

M = lerp(m,, ms,

Figure 8.28 shows an object rendered using Gouraud shading and Phong shading. Because the
direction of the normal vector varies smoothly from point to point and more closely approximates
that of an underlying smooth surface, the production of specular highlights is much more faithful
than with Gouraud shading, and more realistic renderings are produced.

1" Ed. Figure 15.25

Figure 8.28. Comparison of Gouraud and Phong shading (Courtesy of Bishop and Weimar 1986).

The principal drawback of Phong shading is its speed: a great deal more computatjoimasd geer
pixel, so that Phong shading can take 6 to 8 times longer than Gouraud shading to perform. A
number of approaches have been taken to speed up the process [bishop86, claussen90].

OpenGL is not set up to do Phong shading, since it applies the shading model once per vertex right
after the modelview transformation, and normal vector information is not passed todegmg

stage following the perspective transformation and perspective divide. We will see in Section 8.5,
however, that an approximation to Phong shading can be created by mapping a “highlight” texture
onto an object using the environment mapping technique.

Practice Exercises.

8.3.1. Filling your face.Fill in details of how the polygon fill algorithm operates for the polygon
with vertices %, y) = (23, 137), (120, 204), (200, 100), (100, 25), for scan kred 36,y = 137,

andy = 138. Specifically write the values xf, andx,,, in each case.

8.3.2. Clipped convex polygons are still convexDevelop a proof that if a convex polygon is
clipped against the camera’s view volume, the clipped polygon is still convex.

8.3.3. Retaining edges with Gouraud Shadindn some cases we may want to show specific
creases and edges in the model. Discuss how this can be controlled by the choice of the vertex
normal vectors. For instance, to retain the edge betweenFaed’ in Figure 8.26, what should
the vertex normals be? Other tricks and issues can be found in the references [e.g. Rogers85].
8.3.4. Faster Phong shading with fence shadingo increase the speed of Phong shading Behrens
[behrens94] suggests interpolating normal vectors between verticesntp gedm,, in the usual

way at each scan line, but then computing colors only at these left and right pixels, interpolating
them along a scan line as in Gouraud shading. This so-called “fence shadiaeds sip rendering
dramatically, but does less well in rendering highlights than true Phong shadingb®egtréral
directions for the vertex normats,, m,, m,, andm, in Figure 8.27 such that

a). Fence shading produces the same highlights as Phong shading;

b). Fence shading produces very different highlights than does Phong shading.

8.3.5. The Phong shading algorithmMake the necessary changes to the tiling code to incorporate
Phong shading. Assume the vertex normal vectors are available for each face. Also discuss how
Phong shading can be approximated by OpenGL’s smooth shading algorithm. Hint: increase the
number of faces in the model.

8.4. Adding Hidden Surface Removal

It is very simple to incorporate hidden surface removal in the rendering process above if enough
memory is available to have a “depth buffer” (also calleglauffer”). Because it fits so easily into
the rendering mechanisms we are discussing, we include it here. Other (moreteffiditass
memory-hungry) hidden surface removal algorithms are described in Chapter 13.

8.4.1.The Depth Buffer Approach.

The depth buffer (oz-buffer) algorithm is one of the simplest and most easily implemented hidden
surface removal methods. Its principal limitations are that it requires a large amount of memory,

Chapter 8 November 30, 1999 page 22



and that it often renders an object that is later obscured by a nearer object (so time spent rendering
the first object is wasted).

Figure 8.29 shows a depth buffer associated with the frame buffer. For everp{idixebn the
display the depth buffer storebdit quantityd[i][j]. The value ob is usually in the range of 12 to
30 bits.

Figure 8.29. Conceptual view of the depth buffer.

During the rendering process the depth buffer ve[ij¢ j] contains the pseudodepth of the closest

object encountered (so far) at that pixel. As the tiler proceeds pixel by pixel across a scan-line

filling the current face, it tests whether the pseudodepth of the current face is less than the depth
d[i][j] stored in the depth buffer at that point. If so the color of the closer surface replacesrtthe colo
pli][j] and this smaller pseudodepth replaces the old valdg]iij]. Faces can be drawn in any

order. If a remote face is drawn first some of the pixels that show the face will later be replaced by
the colors of a nearer face. The time spent rendering the more remote face is therefore wasted. Note
that this algorithm works for objects of any shape including curved surfaces, because iefinds th
closest surface based on a point-by-point test.

The arrayd[][] is initially loaded with value 1.0, the greatest pseudodepth value possible. The frame
bufferis initially loaded with the background color.

Finding the pseudodepth at each pixel.

We need a rapid way to compute the pseudodepth at each pixel. Recall that eadh véRe®,,

P,) of a face is sent down the graphics pipeline, and passes through various transformations. The
information available for each vertex after the viewport transformation is the 3-tuple that is a scaled
and shifted version of (see Equation 7.2)

P, Py aB+b

-R-P P

The third component is pseudodepth. Constamtisdb have been chosen so that the third component
equals 0 ifP lies in the near plane, and 1Rflies in the far plane. For highest efficiency we would like

to compute it at each pixel incrementally, which implies using linear interpolation as we did for color in
Equation 8.15.

(xy,2)=

Figure 8.30 shows a face being filled along scanlinehe pseudodepth values at various points are
marked. The pseudodepttis d,, d;, andd, at the vertices are known. We want to calcutiteat
scan-liney; aslerp(d,, d,, f) for fractionf = (ys—y1)/(Y2 — Y1) , and similarly gy, aslerp(d,, ds, h) for

the appropriatd. And we want to find the pseudodeptiat each pixelx, y) along the scan-line as
lerp(die, dignt, K) for the appropriat&. (What are the values bfandk?) The question is whether

this calculation produces the “true” pseudodepth of the correspondirtgopdine 3D face.

Figure 8.30. Incremental computation of pseudodepth.

The answer is that it works correctly. We prove this later after developing some additgebraic
artillery, but the key idea is that the original 3D face is flat, and perspective projesames
flatness, so pseudodepth varies linearly with the projectedly coordinates. (See Exercise 8.5.2.)

Figure 8.31 shows the nearly trivial additions to the Gouraud shading tiling algorithm that
accomplish hidden surface removal. Values gfandd,,, are found (incrementally) for each scan-
line, along withd, . which is used in the innermost loop. For each pibdslfound, a single
comparison is made, and an update[dfj] is made if the current face is found to be closest.

for (inty =y vt 'Y =Y o0 Y¥T) [/l for each scan-line
<..find x qoandx o>
<..find d w andd o,andd | .>
<.. find color and color and color >

left right ! inc

Chapter 8 November 30, 1999 page 23




for (int x = x .t » C = color e d=d i X<=X X++, c+=color

i{f(OI <d[xy)

<.. put ¢ into the pixel at (x, y) ..>
dix]ly] = d; // update the closest depth

right ?

}

Figure 8.31. Doing depth computations incrementally.

Depth compression at greater distances.

Recall from Example 7.4.4 that the pseudodepth of a point does not vary linearly with actual depth
from the eye, but instead approaches an asymptote. This means that small changes in true depth
map into extremely small changes in pseudodepth when the depth is large. Since only a limited
number of bits are used to represent pseudodepth, two nearby values can easily map into the same
value, which can lead to errors in the comparisend[x][y] . Using a larger number of bits to
represent pseudodepth helps, but this requires more memory. It helps a little to place the near plane
as far away from the eye as possible.

OpenGL supports a depth buffer, and uses the algorithm described above to do hidden surface
removal. You must instruct OpenGL to create a depth buffer when it initializes the display mode:

glutinitDisplayMode(GLUT_DEPTH | GLUT_RGB);

and enable depth testing with

glEnable(GL_DEPTH_TEST);

Then each time a new picture is to be created the depth buffer must be initialimed us

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); // clear screen

Practice Exercises.

8.4.1.The increments.Fill in details of howd,,, d,,,, andd are found from the pseudodepth values
known at the polygon vertices.

8.4.2. Coding depth valuesSupposé bits are allocated for each element in the depth buffer.

These b bits must record values of pseudodepth between 0 and 1. A value between 0 and 1 can be
expressed in binary in the formyd,d....d whered, is 0 or 1. For instance, a pseudodepth of 0.75

would be coded as .1100000000... Is this a good use oflifie? Discuss alternatives.

8.4.3. Reducing the Size of the Depth Buffel there is not enough memory to implement a full

depth buffer, one can generate the picture in pieces. A depth buffer is estaldishrelgt & fraction

of the scan lines, and the algorithm is repeated for each fraction. For instance, in a 512-by-512
display, one can allocate memory for a depth buffer of only 64 scan lines and do the algorithm eight
times. Each time the entire face list is scanned, depths are computed for faces covering the scan
lines involved, and comparisons are made with the reigning depths so far. Having tteesfeane

list eight times, of course, makes the algorithm operate more slowly. Suppose that a scene involves
F faces, and each face covers on the avdraganlines. Estimate how much more time it takes to

use the depth buffer method when memory is allocated fornftiwgN scanlines.

8.4.4. A single scanline depth bufferThe fragmentation of the frame buffer of the previous

exercise can be taken to the extreme where the depth buffer records depthsdaesoén line. It
appears to require more computation, as each face is “brought in fresh” to the process many times,
once for each scan line. Discuss how the algorithm is modified for this case, and estimate how
much longer it takes to perform than when a full-screen depth buffer is used.

8.5. Adding Texture to Faces.
| found Rome a city of bricks and left it a city of marble.
Augustus Caesar, from SUETONIUS

The realism of an image is greatly enhanced by adding surface texture to the various faces of a
mesh object. Figure 8.32 shows some examples. In part a) images have been “pasted onto” each
of the faces of a box. In part b) a label has been wrapped around a cylindrical can, and the wall
behind the can appears to be made of bricks. In part c) a table has a wood-grain surface, and the

Chapter 8 November 30, 1999 page 24




floor is tiled with decorative tiles. The picture on the wall contains an image pasted inside the
frame.

a). box b). beer can c). wood table — screen shots

Figure 8.32. Examples of texture mapped onto surfaces.

The basic technique begins with some texture functioteixtire spacé such as that shown in
Figure 8.33a. Texture space is traditionally marked off by parameters isamdt The texture
is a functiontextures, t) which produces a color or intensity value for each valigaoidt
between 0 and 1.

b).

a).

Figure 8.33. Examples of textures. a). image texture, b). procedural texture.
There are numerous sources of textures. The most common are bitmaps and computed functions.

* Bitmap textures.

Textures are often formed from bitmap representations of images (such as a digitized photo, clip
art, or an image computed previously in some program). Such a texture consists of aagrray,
txtr[c][r] , of color values (often callegxelg. If the array ha€ columns andr rows, the
indicesc andr vary from 0 toC-1 andR-1, respectively. In the simplest case the function

texturds, t) provides “samples” into this array as in

Color3 texture(float s, float t)

{
}

whereColor3 holds an RGB triple. For example Rf= 400 andC = 600, thertextur€0.261,
0.783) evaluates tixtr [156][313]. Note that a variation affrom 0 to 1 encompasses 600
pixels, whereas the same variatiort encompasses 400 pixels. To avoid distortion during
rendering this texture must be mapped onto a rectangle with aspect ratio 6/4.

return txtr[(int)(s * C)J[(int)(t * R)];

* Procedural textures.
Alternatively we can define a texture by a mathematical function or procedure. Focéndten
“sphere” shape that appears in Figure 8.33b could be generated by the function

float fakeSphere(float s, float t)

float r = sgrt((s-0.5)*(s—0.5)+(t-0.5)*(t—0.5));
if(r < 0.3) return 1 - r/0.3; // sphere intensity
else return 0.2; // dark background

}

that varies from 1 (white) at the center to 0 (black) at the edges of the apparent sphere. Anothe
example that mimics a checkerboard is examined in the exercises. Anything that can be computed
can provide a texture: smooth blends and swirls of color, the Mandelbrot set, wirefranmeydrawi

of solids, etc.

Chapter 8 November 30, 1999 page 25



We see later that the valtexturds, t) can be used in a variety of ways: it can be used as the
color of the face itself as if the face is “glowing”; it can be used as a reflection coefficient to
“modulate” the amount of light reflected from the face; it can be used to alter the normal vector
to the surface to give it a “bumpy” appearance.

Practice Exercise 8.5.1. The classic checkerboard textureigure 8.34 shows a checkerboard
consisting of 4 by 5 squares with brightness levels that alternate between 0 (for black) and 1 (for
white).

a). Write the functiotfloat texture (float s, float t) for this texture. (See also

Exercise 2.3.1.)

b). Writetexture () for the case where there aerows and\ columns in the checkerboard.

c). Repeat part b for the case where the checkerboard is rotatethsiQe to thes andt axes.

Figure 8.34. A classic checkerboard pattern.

With a texture function in hand, the next step is to map it properly onto the desfes sand

then to view it with a camera. Figure 8.35 shows an example that illustrates the overall problem.
Here a single example of texture is mapped onto three different objects: a planar polygon, a
cylinder, and a sphere. For each object there is some transformatidy), (say“texture to

world”) that maps textures(t) values to pointsx( y, z) on the object’s surface. The camera takes

a shapshot of the scene from some angle, producing the view shown. We call the tedizgform
from points in 3D to points on the screBp (“from world to screen”), so a poirk,(y, 2) on a

surface is “seen” at pixel locatiosq sy) = T,(X, Y, 2. So overall, the valuesy, t*) on the texture
finally arrives at pixelgx sy) = T _(T,(S" t%)).

Figure 8.35. Drawing texture on several object shapes.

The rendering process actually goes the other way: for each pis&l s ¢there is a sequence of
guestions:

a). What is the closest surface “seen”sxt §y)? This determines which texture is relevant.
b). To what pointX, y, 2) on this surface doesx sy) correspond?
¢). To which texture coordinate pag; f) does this pointy, y, z) correspond?

So we need the inverse transformation, something dikg £ T, (T, (Sx sy)), that reportsg t)
coordinates given pixel coordinates. This inverse transformation can be hard to obtain or easy to
obtain, depending on the surface shapes.

8.5.1. Pasting the Texture onto a Flat Surface.

We first examine the most important case: mapping texture onto a flat surface. This is a
modeling task. In Section 8.5.2 we tackle the viewing task to see how the texture is actually
rendered. We then discuss mapping textures onto more complicated surface shapes.

Pasting Texture onto a Flat Face.

Since texture space itself is flat, it is simplest to paste texture onto a flat surface. Figure 8.36
shows a texture image mapped to a portion of a planar pofygafe must specify how to
associate points on the texture with pointg-oin OpenGL we associate a point in texture space
P = (s,t) with each verte¥, of the face using the functigiTexCoord2f ().The function
glTexCoord2f (s,t ) sets the “current texture coordinates”¢ot), and they are attached to
subsequently defined vertices. Normally each cadiiertex3f () is preceded by a call to
glTexCoord2f (), so each vertex “gets” a new pair of texture coordinates. For example, to
define a quadrilateral face and to “position” a texture on it, we send OpenGL four texture
coordinates and the four 3D points, as in:

Figure 8.36. Mapping texture onto a planar polygon.

glBegin(GL_QUADS); // define a quadrilateral face

Chapter 8 November 30, 1999 page 26



glTexCoord2f(0.0, 0.0); glVertex3f(1.0, 2.5, 1.5);

glTexCoord2f(0.0, 0.6); glVertex3f(1.0, 3.7, 1.5);

glTexCoord2f(0.8, 0.6); glVertex3f(2.0, 3.7, 1.5);

glTexCoord2f(0.8, 0.0); glVertex3f(2.0, 2.5, 1.5);
glEnd();

Attaching aP, to eachv, is equivalent to prescribing a polygBrin texture space that has the

same number of vertices BsUsuallyP has the same shapeFaas well: then the portion of the
texture that lies insidB is pasted without distortion onto the wholeFofWhenP andF have

the same shape the mapping is clearly affine: it is a scaling, possibly accompanied by a rotation
and a translation.

Figure 8.37 shows the very common case where the four corners of the texture square are
associated with the four corners of a rectangle. (The texture coordigdjesssociated with

each corner are noted on the 3D face.) In this example the texture is a 640 by 480 pixel bitmap,
and it is pasted onto a rectangle with aspect ratio 640/480, so it appears without distortion. (Note
that the texture coordinatesndt still vary from 0 to 1.) Figure 8.38 shows the use of texture
coordinates thattile” the texture, making it repeat. To do this some texture coordinates that lie
outside of the interval [0,1] are used. When the renderer encounters a vaarelbbutside of

the unit square such as 2.67 it ignores the integral part and uses only the fractional part 0.67.
Thus the point on a face that requirgg)(= (2.6, 3.77) is textured witlexturg0.6, 0.77). By

default OpenGL tiles texture this way. It may be set to “clamp” texture values instead, if desired
see the exercises.

Figure 8.37. Mapping a square to a rectangle.

Figure 8.38. Producing repeated textures.

Thus a coordinate pais, (t) is sent down the pipeline along with each vertex of the face. As we
describe in the next section, the notion is that points insid@l be filled with texture values

lying insideP, by finding the internal coordinate valuast] using interpolation. This
interpolation process is described in the next section.

Adding texture coordinates to Mesh objects.

Recall from Figure 6.13 that a mesh object has three lists: the vertex, normal vector, and face
lists. We must add to this a “texture coordinate” list, that stores the coordigafeso(be
associated with various vertices. We can add an array of elements of the type:

class TxtrCoord{public: float s, t;};

to hold all of the coordinate pairs of interest for the mesh. There are several diffaysrtow
treat texture for an object, and each has implications for how texture information is organized in
the model. The two most important are:

1. The mesh object consists of a small number of flat faces, and a different texture is to be
applied to each. Here each face has only a single normal vector but its own list of texture
coordinates. So the data associated with each face would be:

the number of vertices in the face;

the index of the normal vector to the face;
a list of indices of the vertices;

a list of indices of the texture coordinates;

2. The mesh represents a smooth underlying object, and a single texture is to be “wrapped”
around it (or a portion of it). Here each vertex has associated with it a specific normal vector
and a particular texture coordinate pair. A single index into the vertex/normals/téstiare |
is used for each vertex. The data associated with each face would then be:

the number of vertices in the face;

Chapter 8 November 30, 1999 page 27



a list of indices of the vertices;

The exercises take a further look at the required data structures for these types of meshes.

8.5.2. Rendering the Texture.

Rendering texture in a fa¢eis similar to Gouraud shading: the renderer moves across the face
pixel by pixel. For each pixel it must determine the corresponding texture coord®dies (
access the texture, and set the pixel to the proper texture color. We shall see that finding the
coordinatesg, t) must be done very carefully.

Figure 8.39 shows the camera taking a snapshot oHadth texture pasted onto it, and the
rendering in progress. Scanlipés being filled fromx,, tox,, . For eachx along this scanline

we must compute the correct position (showR@sy)) on the face, and from this obtain the
correct positiong*, t*) within the texture.

Figure 8.39. Rendering the face in a camera snapshot.

Having set up the texture to object mapping, we know the texture coordinates at each of the vertices
of F, as suggested in Figure 8.40. The natural thing is to comgpyte,j and §,,, t,,,) for each

scanline in a rapid incremental fashion and to interpolate between these values moving across the
scanline. But we must be careful: simple increments fgito s, as we march across scanline

from x,, to x,,,, won't work, since equal steps across a projected facetmrrespond to equal

steps across the 3D face.

Figure 8.40. Incremental calculation of texture coordinates.

Figure 8.41 illustrates the problem. Part a shows Faciewed so that its left edge is closer to the
viewer than its right edge. Part b shows the projedtiarf this face on the screen. At scan-line

170 we mark points equally spaced actessuggesting the positions of successive pixels on the
face. The corresponding positions of these marks on the actual face are shown in part a. They are
seen to be more closely spaced at the farther eRdTdiis is simply the effect of perspective
foreshortening.

Figure 8.41. Spacing of samples with linear interpolation.

If we use simple linear interpolation and take equally spaced steamdt to compute texture
coordinates, we “sample” into the texture at the wrong spots, and a distorted im#ige Feagure

8.42 shows what happens with a simple checkerboard texture mapped onto a rectangle. Linear
interpolation is used in part a, producing palpable distortion in the texture. Thisiaclistert

particularly disturbing in an animation where the polygon is rotating, as the texture appears to warp
and stretch dynamically. Correct interpolation is used in part b, and the checkerboard iboks a
should. In an animation this texture would appear to be firmly attached to the movingingrotat

face.

a). linear b). correct

Figure 8.42. Images formed using linear interpolation and correct interpolation.

Several approaches have appeared in the literature that develop the proper interpolation method.
Heckbert and Moreton [heckbert91] and Blinn [blinn92] describe an elegant development based on
the general nature of affine and projective mappings. Segal et al [segal92] arrive atetlessdim

using a more algebraic derivation based on the parametric representation for a line.3&fgment
follow the latter approach here.

Figure 8.43 shows the situation to be analyzed. We know that affine and projective

transformations preserve straightness, solljrie eye space projects to lihgin screen space,
and similarly the texels we wish to draw on lindie along the lind., in texture space that maps

Chapter 8 November 30, 1999 page 28



to L.. The key question is this: if we move in equal steps atrassthe screen how should we
step across texels alohgin texture space?

Figure 8.43. Lines in one space map to lines in another.

We develop a general result next that summarizes how interpolation works: it @ldwawith
the effect of perspective division. Then we relate the general result to the transformations
performed in the graphics pipeline, and see precisely where extra steps takstrbe do proper
mapping of texture.

Figure 8.44 shows the lin&B in 3D being transformed into the liad in 3D by matrixM. (M
might represent an affine transformation, or a more general perpspective trarisfojrAahaps
to a, B maps tdb. Consider the poirR(g) that lies fractiorg of the way betweeA andB. It
maps to some poimtf) that lies fractiorf of the way froma to b. The fractiong andg arenot the
same as we shall see. The question i§yvasies from 0 to 1 how exactly dogwvary? That is,
how does motion alongb correspond to motion alogB?

Figure 8.44. How does motion along corresponding lines operate?

Deriving how g and f are related. _
We denote the homogeneous coordinate versiarbgfa, and name its components
a= (al, 3, a, a4). (We use subscripts 1,2,3, and 4 instead gf etc. to prevent ambiguity,

since there are so many differemt ¥, ' spaces.) So poird is found froma by perspective
division: a = (i ,& ,&) SinceM mapsA= (A, A, A) to awe knowa = M(A1)" where @,
a

4 G4 A
1)" is the column vector with componerts A, A, and 1. Similarlyp = M(B1)". (Check each
of these relations carefully.) Now usifegp() notation to keep things succinct, we have defined
R(g) = lerp(A, B, g), which maps tdVl(lerp(A B, 9),))" = lerda b §
=(lerp(a,b, 9, lerpa, B, g, lerf g b, @ lerp & B P (Check these, too.) This is
the homogeneous coordinate versfé(rf) of the pointr(f). We recover the actual components of
r(f) by perspective division. For simplicity write just the first compomgfjt which is:

r(f)= lerp(a, b, 9 (8.16)
lerp(a,, b,, 9
But since by definitiom(f) = lerp(a, b, f) we have another expression for the first componéfit
n(f)= |efp(i,ﬂ, f) (8.17)
a, b4

Expressions (what are they?) foff) andr(f) follow similarly. Equate these two versionsrgf)
and do a little algebra to obtain the desired relationship betiasiy:

f
lerp( 1, 1)
a

A

g= (8.18)

Therefore the poinR(g) maps ta(f), butg andf aren’t the same fractiog.matches at = 0 and af
=1, but its growth witl is tempered by a denominator that depends on thebyAdjol!f a, equals
b, theng is identical tof (check this). Figure 8.45 shows hgwaries withf, for different values of
b/a,.

g vsf

Chapter 8 November 30, 1999 page 29



Figure 8.45. Hovg depends oif

We can go the final step and show where the (g is on the 3D face that maps im{(@).
Simply use Equation 8.17 R(g) = A(1-g)+Bg and simplify algebraically (check this out) to obtain
for the first component:

Ierp(:1 51 f)

— 4

= A
R 1 1 (8.19)

Ierp(i 'y, f )

a, b4

with similar expressions resulting for the componéytandR, (which have thsamedenominator
asR). This is a key result. It tells which 3D poiRR (R,, R,) corresponds (in eye coordinates) to a
given point that lies (fractiohof the way) between two given poirggndb in screen coordinates.
So any quantity (such as texture) that is “attached” to vertices of the 3D face and varies linearly
between them will behave the same way.

The two cases of interest for the transformation with madriere:
The transformation is affine;
The transformation is the perspective transformation.

a).When the transformation is affine thegrandb, are both 1 (why?), so the formulas above
simplify immediately. The fractionsandg become identical, arid, above becomdsrp(A,, B,, f).
We can summarize this as:

Fact: If M is affine, equal steps along the liab do correspond to equal steps along the Ase \

b). WhenM represents the perspective transformation from eye coordinates to clip coordinates the
fourth componenta, andb, are no longer 1.We developed the malixn Chapter 7. Its basic
form, given in Equation 7.10, is:

N O O O

0O N O O
M=

0O 0 ¢ d

0O 0 -1 0

wherec andd are constants that make pseudodepth work properly. WNHRI4)' for this matrix?
lts a =(NA, NA,,cA, +d,- A,), the crucial part being that = -A,. This is the position of the
point along thez-axis in camera coordinates, that is the depth of the point in front of the eye.

So the relative sizes af andb, lie at the heart of perspective foreshortening of a line segment: they
report the “depths” ofA andB, respectively, along the camera’s viewplane normal.dhdB have

the same depth (i.e. they lie in a plane parallel to the camera’s viewplane), there is no perspective
distortion along the segment, gandf are indeed the same. Figure 8.46 shows in cross section how
rays from the eye through evenly spaced spots (those with equal increnfeots he viewplane
correspond to unevenly spaced spots on the original face in 3D. For the casésbalaser than

B, causingg, < b,, so theg-increments grow in size moving across the face ffoio B.

Figure 8.46. The values af andb, are related to the depths of points.

Rendering incrementally.

We now put these ingredients together and find the proper texture coordsmgtas éach point on
the face being rendered. Figure 8.47 shows a face of the barn being rendered ddge of the
face has endpointsandb. The face extends from, to x,, across scan-ling We need to find
appropriate texture coordinatesg (t.,) and §,,, t,,,) to attach to,, andx,,, respectively, which
we can then interpolate across the scan-line. Consider figgd{sy the value of,, at scan-lingy.

Chapter 8 November 30, 1999 page 30



We know that texture coordinasgis attached to poirg, ands, is attached to poiri, since these
values have been passed down the pipeline along with the vextioredB. If the scan-line ay is
fractionf of the way between,,, andy,,, (so thatf = (Y —Y,,)/(Vi,— Yoow): then we know from
Equation 8.19 that the proper texture coordinate to use is:

Figure 8.47. Rendering the texture on a face.

lerp(:, 38 1)

a
Set(W=—7—7 (8.20)
Ierp(i 'y, f )
4 b4
and similarly fort,,. Notice that,, andt,, have the same denominator: a linear interpolation
between values &4/ and 1b,. The numerator terms are linear interpolations of texture coordinates
which have been divided lay andb,. This is sometimes called “rational linear” rendering
[heckbert91] or “hyperbolic interpolation” [blinn92]. To calculase {{ efficiently asf advances we
need to store values sfa,, s./b,, t./a, t/b,, 1/a, and 1b,, as these don't change from pixel to
pixel. Both the numerator and denominator terms can be found incrementally fo; pestlas we
did for Gouraud shading (see Equation 8.15). But togjpdndt_, we must still perform an explicit
division at each value gf

left

The pair §,,, t.,,) is calculated in a similar fashion. They have denominators that are based on
values ofa,” andb,’ that arise from the projected poirgsandb'.

Once 6, t.,) and €, t,,,) have been found the scan-line can be filled. For gdichm x, to X,
the values andt are found, again by hyperbolic interpolation. (what is the expressiarafar)

Implications for the graphics pipeline.

What are the implications of having to use hyperbolic interpolation to render texture propetly? An
does the clipping step need any refinement? As we shall see, we must send certainladditiona
information down the pipeline, and calculate slightly different quantities than supposed so far.

Figure 8.48 shows a refinement of the pipeline. Various points are labeled with the irdortihat

is available at that point. Each vertéxs associated with a texture part} as well as a vertex
normal. The vertex is transformed by the modelview matrix (and the normal is multiplied by the
inverse transpose of this matrix), producing vesex (A, A,, A,) and a normah’ in eye

coordinates. Shading calculations are done using this normal, producing the<dprc, ¢). The
texture coordinatesy, t,) (which are the same &as ()) are still attached t8. VertexA then
undergoes the perspective transformation, produﬁiﬁg(al, 3, a, a4). The texture coordinates

and colorc are not altered.

Figure 8.48. Refinement of the graphics pipeline to include hyperbolic interpolation.

Now clipping against the view volume is done, as discussed in Chapter 7. As the figure suggests,
this can cause some vertices to disappear and others to be formed. When a verteR $&ich as
created we must determine its positidp ¢,, d,, d,) and attach to it the appropriate color and

texture point. By the nature of the clipping algorithm the position compodeants formed by

linear interpolationd, = lerp(a, b, t), fori = 1,.., 4, for somé Notice that the fourth componeut

is also formed this way. It is natural to use linear interpolation here also to form botlothe co
components and the texture coordinates. (The rationale for this is discussed in tisesXxerc
Therefore after clipping the face still consists of a number of vertices, and to each is attached a
color and a texture point. For poifitthe information is stored in the arragy, @, a,, a,, S,, t,, C, 1).

A final term of 1 has been appended: we will use it in the next step.

Now perspective division is done. Since for hyperbolic interpolation we need terms seh as
and 14, (see Equation 8.20) we divid&eryitem in the array that we wish to interpolate
hyperbolically bya, to obtain the array(y, z 1,s/a, t,/a,, c, 1/a,). (We could also divide the
color components in order to obtain slightly more realistic Gouraud shading. Seetise=x) The

Chapter 8 November 30, 1999 page 31



first three, &, vy, 2 = (&/a,, a/a,, a/a,) report the position of the point in normalized device
coordinates. The third component is pseudodepth. The first two components are scaled and shifted
by the viewport transformation. To simplify notation we shall continue to call the screen cterdina

point (, y, 2).

So finally the renderer receives the armay(z 1,s/a, t./a, c, 1/a,) for each vertex of the face to
be rendered. Now it is simple to render texture using hyperbolic interpolation as in Equation 8.20:
the required values/a, and 14, are available for each vertex.

Practice exercises.

8.5.1. Data structures for mesh models with texture®iscuss the specific data types needed to
represent mesh objects in the two cases:

a). a different texture is to be applied to each face;

b). a single texture is to be “wrapped” around the entire mesh.

Draw templates for the two data types required, and for each show example data in the various
arrays when the mesh holds a cube.

8.5.2. Pseudodepth calculationare correct. Show that it is correct, as claimed in Section 8.4, to
use linear (rather than hyperbolic) interpolation when finding pseudodepth. AssumA pjects

to a, andB projects tdb. With linear interpolation we compute pseudodepth at the projected point
lerp(a, b, f) as the third component of this point. This is the correct thing to do only if the resulting
value equals the true pseudodepth of the pointi¢hatA, B, g) (for the appropriatg) projects to.
Show that it is in fact correct. Hint: Apply Equations 8.16 and 8.17 to the third component of the
point being projected.

8.5.3. Wrapping and clamping textures in OpenGLTo make the pattern “wrap” or “tile” in
thesdirection useglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,

GL_REPEAYJ. Similarly useGL_TEXTURE_WRAP_Tfor wrapping in the-direction. This is
actually the default, so you needn’t do this explicitly. To turn off tiling replzicdREPEATwith

GL CLAMP Refer to the OpenGL documentation for more details, and experiment withrdiffere
OpenGL settings to see their effect.

8.5.4. Rationale for linear interpolation of texture during clipping. New vertices are often created
when a face is clipped against the view volume. We must assign texturenedesdp each vertex.
Suppose a new vertékis formed that is fractiohof the way from vertex to vertexB on a face.
Further suppose thétis assigned texture coordinatsg, €»), and similarly forB. Argue why, if a
texture is considered as “pasted” onto a flat face, it makes sense to assigndeotdinates

(lerp(sa, Ss; ), lerp(ta, tg, f)) to V.

8.5.5. Computational burden of hyperbolic interpolation.Compare the amount of computation
required to perform hyperbolic interpolation versus linear interpolation of texture coordinates.
Assume multiplication and division each require 10 times as much time as addition and subtraction.

8.5.3. What does the texture modulate?

How are the values in a texture map “applied” in the rendering calculation? We examine three
common ways to use such values in order to achieve different visual effects. We dodtdionple

case of the gray scale intensity calculation of Equation 8.5. For full color the same calculations are
applied individually for the red, green, and blue components.

1). Create a glowing object.

This is the simplest method computationally. The visible intems&yset equal to the texture value

at each spot:

| =texturd s )

(or to some constant multiple of it). So the object appears to emit light or glow: lower texture values
emit less light and higher texture values emit more light. No additional lighting calculations need be
done.

(For colored light the red, green, and blue components are set separately: for itistarext,
component ig, = texture(s, 9.)

To cause OpenGL to do this type of texturing, specify:

Chapter 8 November 30, 1999 page 32



gITexEnvi(GL_TEXUTRE_ENV,GL_TEXTURE_ENV_MODE, GL_REPLACE);

2). Paint the texture by modulating the reflection coefficient.

We noted earlier that the color of an object is the color of its diffuse light compovieer bathed

in white light). Therefore we can make the texture appear to be painted onto the surface by varying
the diffuse reflection coefficient, and perhaps the ambient reflection coefficient as well. We say that
the texture function “modulates” the value of the reflection coefficient from point to gdins we
replace Equation 8.5 with:

| =texture( s )[ Lr,+ |, lambedt+ Lr .~ phonf

for appropriate values afandt. Since Phong specular reflections are the color of the source rather
than the object, highlights do not depend on the texture.

To cause OpenGL to do this type of texturing, specify:
glTexEnvf(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE, GL_MODULATE);

3). Simulate roughness by Bump Mapping.

Bump mapping is a technique developed by Blinn [blinn78] to give a surface a wrinkled (like a
raisin) or dimpled (like an orange) appearance without struggling to model each dimple itself. Here
the texture function is used to perturb the surface normal vector, which causes pertibdktien

amount of diffuse and specular light. Figure 8.49 shows one example, and Plate ??? shows another.
One problem associated with bump mapping is that since the model itself does not contain the
dimples, the object’s silhouette doesn’t show dimples either, but is perfectly smooth along each
face. In addition, the corner between two adjacent faces is also visible in the silhouette. This can be
seen in the example.

screen shot — bump mapping on a buckyball, showing some (smooth)|edges
in silhouette

Figure 8.49. An apparently dimpled surface, achieved by bump mapping.

The goal is to make a scalar functiemxturds, t) perturb the normal vector at each spot in a

controlled fashion. In addition, the perturbation should depend only on the surface shape and the
texture itself, and not on the orientation of the object or position of the eye. If it depended on
orientation, the dimples would change as the object moved in an animation, contrary to the desired
effect.

Figure 8.50 shows in cross section how bump mapping works. Suppose the surface is represented
parametrically by the functioR(u, v), and has unit normal vector(u, v). Suppose further that the

3D point at (i*, v*) corresponds to the texture at(v*). Blinn’s method simulates perturbing the
position of the true surface in the direction of the normal vector by an amount proportional to
texturgu*, v*):

a). b).

Figure 8.50. On the nature of bump mapping.

P'(u*, v*) = P(u*, v¥) + texturd u*, v*) m(u*, v*) (8.21)

as shown in Figure 8.50a, which adds undulations and wrinkles in the surface. This perturbed
surface has a new normal vecho'( u*, v*) at each point. The idea is to use this perturbed normal

as if it were “attached” to the original unperturbed surface at each point, as shown in Figure 8.50b.
Blinn shows that a good approximation to thg¢u*, v*) (before normalization) is given by:

m’(u*, v*) = m(u*, v*) + d(u*, v¥) (8.22)

where the perturbation vectdris given by

(u*, v*) =(m~ PB) texture- (M [ texture

8 Use eithelGL REPLACEor GL_ DECAL

Chapter 8 November 30, 1999 page 33



wheretexture andtexture are partial derivatives of the texture function with respeatandv
respectively. FurtheR, andP, are partial derivative d®?(u, v) with respect ta andyv,
respectively. All functions are evaluated @, (v*). Derivations of this result may also be
found in [watt2, miller98]. Note that the perturbation function depends only on the patrtial
derivatives oftexture), not ontexture) itself.

If a mathematical expression is availabletfotturg) you can form its partial derivatives
analytically. For examplaexturg) might undulate in two directions by combining sinewaves,
as in:texturgu, v) = sin(au)sin(bv) for some constaneandb. If the texture comes instead
from an image array, linear interpolation can be used to evaluatesit &t); and finite
differences can be used to approximate the partial derivatives.

8.5.4. A Texturing Example using OpenGL.

To illustrate how to invoke the texturing tools that OpenGL provides, we show an application that
displays a rotating cube having different images painted on its six sides. Figure 8.51 shows a
snapshot from the animation created by this program.

Figure 8.51. The textured cube generated by the example code.

The code for the application is shown in Figure 8.52. It uses a number of OpenGL functions to
establish the six textures and to attach them to the walls of the cube. There are many variations of
the parameters shown here that one could use to map textures. The version shown works well, but
careful adjustment of some parameters (using the OpenGL documentation as aaguinigrove

the images or increase performance. We discuss only the basics of the key routines.

One of the first tasks when adding texture to pictures is to crggtenap of the texture in

memory. OpenGL uses textures that are stored in “pixel maps”, or pixmaps for short. These are
discussed in depth in Chapter 10, and the &&3Bpixmap is developed that provides tools for
creating and manipulating pixmaps. Here we view a pixmap as a simple array of pixel values, each
pixel value being a triple of bytes to hold the red, green, and blue color values:

class RGB{ // holds a color triple — each with 256 possible intensities
public: unsigned char r,g,b;

TheRGBpixmap class stores the number of rows and columns in the pixmap, as well as the gdbeess o
first pixel in memory:

class RGBpixmap{
public:
int NnRows, nCols; // dimensions of the pixmap
RGB* pixel; /[ array of pixels
int readBMPFile(char * fname); // read BMP file into this pixmap
void makeCheckerboard();
void setTexture(GLuint textureName);

Chapter 8 November 30, 1999 page 34



We show it here as having only three methods that we need for mapping textures. Other methodssand detai

are discussed in Chapter 10. The metteadiBMPFile () reads a BMP fildand stores the pixel values in its
pixmap object; it is detailed in Appendix 3. The other two methods are discussed next.

Our example OpenGL application will use six textures. To create them we first mBK&Bgrixmap object
for each:

RGBpixmap pix[6]; // create six (empty) pixmaps

and then load the desired texture image into each one. Finally each one is passed to Opédir@lato de
texture.

1). Making a procedural texture.

We first create a checkerboard texture using the mettadeCheckerboard(). The checkerboard
pattern is familiar and easy to create, and its geometric regularity makes it a good texture for testing
correctness. The application generates a checkerboard pixmap in pix[0] using:
pix[0].makeCheckerboard().

The method itself follows:

void RGBpixmap:: makeCheckerboard()
{ // make checkerboard patten
nRows = nCols = 64;
pixel = new RGB[3 * nRows * nCols];
if(!pixel){cout << "out of memory!”;return;}
long count = 0;
for(inti = 0; i < nRows; i++)
for(int j = 0; j < nCals; j++)

int c = (((i/8) + (1/8)) %?2) * 255; 10
pixel[count].r = /l red
pixel[count].g = c /I green

pixel[count++].b =0; // blue

}

It creates a 64 by 64 pixel array, where each pixel R@Btriple. OpenGL requires that texture pixel maps
have a width and height that are both some power of two. The pixel map is laid out inyrasrane long

array of bytes: row by row from bottom to top, left to right across a row. ¢tate pixel is loaded with the

value ¢, c, 0), wherec jumps back and forth between 0 and 255 every 8 pixels. (We used a similar “jumping
method in Exercise 2.3.1.) The two colors of the checkerboardauie (0,0,0), and yellow: (255,255,0). The
function returns the address of the first pixel of the pixmap, which is latexdpggTexImage2D () to

create the actual texture for OpenGL.

Once the pixel map has been formed, we must bind it to a unique integer “nama’isadh be referred to in
OpenGL without ambiguity. We arbitrarily assign the names 2001, 2002, ..., 20064ix textures in this
examplél The texture is created by making certain calls to OpenGL, which we encapstieeriathod:

void RGBpixmap :: setTexture(GLuint textureName)

glBindTexture(GL_TEXTURE_2D,textureName);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,GL_NEAREST);

9 This is a standard device-independent image file format from Microsoft. Many imagesidablawn the
internet in BMP format, and tools are readily available on the internet to convertrotiye formats to BMP
files.

10 A faster way that uses C++’s bit manipulation operators=i%(i&8)"(j&8))*255 ;

1170 avoid overlap in (integer) names in an application that uses many textures, it ifodett@penGL
supply unique names for textures usgi@enTextures() . If we need six unique names we can build an
array to hold themGLuint name[6  ]; and then calfjlGenTextures(6,name ). OpenGL places six
heretofore unused integersriame[0],...,name[5] , and we subsequently refer to th¢h texture using
nameli]

Chapter 8 November 30, 1999 page 35



glTeximage2D(GL_TEXTURE_2D, 0, GL_RGB,nCols,nRows,0, GL_RGB,
GL_UNSIGNED_BYTE, pixel);
}

The call togIBindTexture () binds the given name to the texture being formed. When this call is made at a
later time, it will make this texture the “active” texture, as we shall see.

The calls tagITexParameteri() specify that a pixel should be filled with the texel whose coordinates are
nearest the center of the pixel, both when the texture needs to be magniéiddaad in size. This is fast but
can lead to aliasing effects. We discuss filtering of images and antialiasing far@apter 10. Finally, the
call toglTeximage2D( ) associates the pixmap with this current texture. This call describes tine text

2D consisting of RGB byte-triples, gives its width, height, and the agldresemorygixel ) of the first byte

of the bitmap.

2. Making a texture from a stored image.

OpenGL offers no support for reading an image file and creating the pixel map in memory. The
methodreadBMPFile (), given in Appendix 3, provides a simple way to read a BMP image into
a pixmap. For instance,

pix[1].readBMPFile("mandrill.omp™);

reads the filenandrill .bmpand creates the pixmap pix[1].

Once the pixel map has been creatpit[1].setTexture() is used to pass the pixmap to
OpenGL to make a texture.

Texture mapping must also be enabled lttnable (GL TEXTURE2D). In addition, the

routineglHint(GL_PERSPECTIVE_CORRECTION_HINT,GL_NICEST) is used to request
that OpenGL render the texture properly (using hyperbolic interpolation), so that it appears
correctly attached to faces even when a face rotates relative to the viewer in an animation.

/I <... the usual includes ...>

#include "RGBpixmap.h"

BB R R GLOBALS #H#H BT R
RGBpixmap pix[6]; // make six (empty) pixmaps

float xSpeed = 0, ySpeed = 0, xAngle = 0.0, yAngle = 0.0;

1< LLLLLLLLLLLL myinit SSSS5533353333535335353355>,
void mylnit(void)

glClearColor(1.0f,1.0f,1.0f,1.0f); // background is white
glEnable(GL_DEPTH_TEST);
glEnable(GL_TEXTURE_2D);

pix[0].makeCheckerboard(); /I make pixmap procedurally
pix[0].setTexture(2001); /I create texture
pix[1].readBMPFile("Mandrill.bmp"); // make pixmap from image
pix[1].setTexture(2002); /I create texture

/I< ...similarly for other four textures ...>

glViewport(0, 0, 640, 480); // set up the viewing system
gIMatrixMode(GL_PROJECTION);

glLoadldentity();

gluPerspective(60.0, 640.0/ 480, 1.0, 30.0); // set camera shape
gIMatrixMode(GL_MODELVIEW);

glLoadldentity();

glTranslated(0.0, 0.0, -4); // move camera back

fl<<<<<gggggggg<<< display >>>>>>>>>>5>555>>>>>>>>
void display(void)

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
glPushMatrix();
glRotated(xAngle, 1.0,0.0,0.0); glRotated(yAngle, 0.0,1.0,0.0); /
rotate

Chapter 8 November 30, 1999 page 36



giBindTexture(GL_TEXTURE_2D,2001); // top face: 'fake' checkerboard
glBegin(GL_QUADS);

glTexCoord2f(-1.0, -1.0); glVertex3f(-1.0f, 1.0f, -1.0f);

glTexCoord2f(-1.0, 2.0); glVertex3f(-1.0f, 1.0f, 1.0f);

glTexCoord2f(2.0, 2.0); glVertex3f( 1.0f, 1.0f, 1.0f);

glTexCoord2f(2.0, -1.0); glVertex3f( 1.0f, 1.0f, -1.0f);

glEnd();

gIBindTexture(GL_TEXTURE_2D,2002); // right face: mandrill
glBegin(GL_QUADS);

glTexCoord2f(0.0, 0.0); glVertex3f(1.0f, -1.0f, 1.0f);
glTexCoord2f(0.0, 2.0); glVertex3f(1.0f, -1.0f, -1.0f);
glTexCoord2f(2.0, 2.0); glVertex3f(1.0f, 1.0f, -1.0f);
glTexCoord2f(2.0, 0.0); glVertex3f(1.0f, 1.0f, 1.0f);

glEnd();

/I <... similarly for other four faces ...>
glFlush();

glPopMatrix();

glutSwapBuffers();

[]<<<<LLLLLLLLLLLLLLL LKL LKL LKL Spinner DSSSSSS5SS5355555>5>5>5>
void spinner(void)
{ /I alter angles by small amount

xAngle += xSpeed; yAngle += ySpeed,;

display();

/1<K MaAin S>>>>>>>>>>>>>SSSSSSSSSS>S>>>>>>
void main(int argc, char **argv)
{
glutinit(&argc, argv);
glutinitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
glutinitWindowSize(640,480);
glutinitWindowPosition(10, 10);
glutCreateWindow("rotating textured cube");
glutDisplayFunc(display);
myInit();
glutldleFunc(spinner);
glutMainLoop();

}

Figure 8.52. An application of a rotating textured cube.

The texture creation, enabling, and hinting needs to be done only once, itigdimation routine. Then
each time through the display routine the texture is actually applidisdiay () the cube is rotated
through anglegAngle , andyAngle , and the six faces are drawn. This requires simply that the
appropriate texture be bound to the face and that withiBegin ()/gIEnd () pair the texture coordinates
and 3D positions of the face’s vertices be specified, as shown in the code.

Once the rendering (off screen) of the cube is comglat8wapBuffers () is called to make the new
frame visible. The animation is controlled by using the callback funspomer () as the “idle function”.
Whenever the system is idle — not responding to user ingpitwer is called automatically. It alters the
rotation angles of the cube slightly, and cdilplay () once again. The effect is an ongoing animation
showing the cube rotating, so that its various faces come into view and rotateieut afjain and again.

8.5.5. Wrapping texture on curved surfaces.

We have seen how to paste a texture onto a flat surface. Now we examine how to wrap texture
onto a curved surface, such as a beer can or a chess piece. We assume as before that the object is
modeled by a mesh, so it consists of a large number of small flat faces. As discussed at the end

of Section 8.5.1 each vertex of the mesh has an associated texture coordingig pdihé

main question is finding the proper texture coordingt® for each vertex of the mesh.

We present examples of mapping textures onto “cylinder-like” objects and “sphere-liketspbje
and see how a modeler might deal with each one.

| Example 8.5.1. Wrapping a label around a can.

Chapter 8 November 30, 1999 page 37



Suppose that we want to wrap a label about a circular cylinder, as suggested 18 Egardt’s
natural to think in terms of cylindrical coordinates. The label is to extenddytong, in

azimuth and fronz, to z, along thez-axis. The cylinder is modeled as a polygonal mesh, so its
walls are rectangular strips as shown in part b. For véttfxeach face we must find suitable
texture coordinates(t), so that the correct “slice” of the texture is mapped onto the face.

a). b).

Figure 8.53. Wrapping a label around a cylinder.

The geometry is simple enough here that a solution is straightforward. There ig &rdiesc
relationship betweers(t) and the azimuth and heigltt, ¢ of a point on the cylinder’s surface:

S= 9- 9a , t= 24 (8.23)

v - 4, Z,- Z,
So if there aré\ faces around the cylinder, théh face has left edge at azimujt= 2pi/N, and
its upper left vertex has texture coordinates;{ = ((2pi/N - g2)/(qp-9s), 1). Texture coordinates
for the other three vertices follow in a similar fashion. This association betg/ggand the
vertices of each face is easily put in a loop in the modeling routine (see thisexer

Things get more complicated when the object isn’t a simple cylinder. We see next how to map
texture onto a more general surface of revolution.

Example 8.5.2. “Shrink wrapping” a label onto a Surface of Revolution.

Recall from Chapter 6 that a surface of revolution is defined by a profile owyez(v))12 as
shown in Figure 8.54a, and the resulting surface - here a vase - is given parambtrie@llyw)

= (x(v) cosu, x(v) sinu, z(v)). The shape is modeled as a collection of faces with sides along
contours of constantandv (see Figure 8.54b). So a given fé&has four vertice®(u, v,

P(u,,, v), P(u, v,,), andP(u,,, v,,). We need to find the appropriat tj coordinates for each of
these vertices.

a). a vase profile b). a face on the vase - four corners

Figure 8.54.Wrapping a label around a vase.

One natural approach is to proceed as above and toswakk vary linearly withu andv in the
manner of Equation 8.23. This is equivalent to wrapping the texture about an imaginary rubber
cylinder that encloses the vase (see Figure 8.55a), and then letting the cylinder collapse, so that
each texture point slides radially (and horizontally) until it hits the surface of the vase. This
method is called “shrink wrapping” by Bier and Sloane [bier86], who discuss several possible
ways to map texture onto different classes of shapes. They view shrink wrapping in tdrens of t
imaginary cylinder’'s normal vector (see Figure 8.55b): texture pbistassociated with the

object pointV, that lies along the normal froR.

Figure 8.55. Shrink wrapping texture onto the vase.

Shrink wrapping works well for cylinder-like objects, although the texture pattern will be
distorted if the profile curve has a complicated shape.

Bier and Sloane suggest some alternate ways to associate texture points on the imaginary
cylinder with vertices on the object. Figure 8.56 shows two other possibilities.

a). centroid b). object normal

Figure 8.56. Alternative mappings from the imaginary cylinder to the object.

12\We revert to calling the parameterandyv in the parametric representation of the shape, since we are using
s andt for the texture coordinates.

Chapter 8 November 30, 1999 page 38



In part a) a line is drawn from the object’s centi@jdhrough the verte¥,, to its intersection
with the cylinderP,. And in part b) the normal vector to the object’s surfacé stusedP, is at
the intersection of this normal frow) with the cylinder. Notice that these three ways to
associate texture points with object points can lead to very different results dependiag on t
shape of the object (see the exercises). The designer must choose thétaidstraethod based
on the object’s shape and the nature of the texture image being mapped. (What would be
appropriate for a chess pawn?)

Example 8.5.3. Mapping texture onto a sphere.

It was easy to wrap a texture rectangle around a cylinder: topologically a cylinder slaete

open and laid flat without distortion. A sphere is a different matter. As all map makers know,
there is no way to show accurate details of the entire globe on a flat piece of paper: if you slice
open a sphere and lay it flat some parts always suffer serious stretching. (Try to imagine a
checkerboard mapped over an entire sphere!)

It's not hard to paste a rectangular texture image optwrtéon of a sphere, however. To map
the texture square to the portion lying between azimutbg, and latitudd , tof, just map
linearly as in Equation 8.23: if vertdk lies a €}, f,) associate it with texture coordinatgst() =
((gi - a)/((ap - 9, (Fi - f)/(fp - f)). Figure 8.57 shows an image pasted onto a band around a
sphere. Only a small amount of distortion is seen.

a). texture on portion of sphere b). 8 maps onto 8 octants

Figure 8.57. Mapping texture onto a sphere.

Figure 8.57b shows how one might cover an entire sphere with texture: map eight triangular
texture maps onto the eight octants of the sphere.

Example 8.5.4. Mapping texture to sphere-like objects.

We discussed adding texture to cylinder-like objects above. But some objects are more sphere-
like than cylinder-like. Figure 8.58a shows the buckyball, whose faces are pentagons and
hexagons. One could devise a number of pentagonal and hexagonal textures and manually paste
one of each face, but for some scenes it may be desirable to wrap the whole buckyball in a single
texture.

a). buckyball b). three mapping methods

Figure 8.58. Sphere-like objects.

It is natural to surround a sphere-like object with an imaginary sphere (rather thardargyl

that has texture pasted to it, and use one of the association methods discussed above. Figure
8.58b shows the buckyball surrounded by such a sphere in cross section. The three ways of
associating texture poink with object vertice¥, are sketched:

object-centroidP, is on a line from the centroid through vertey;

object-normal P, is the intersection of a ray frox in the direction of the face normal,
sphere-normalV, is the intersection of a ray froR)in the direction of the normal to the sphere
atpP.

(Question: Are the object-centroid and sphere-normal methods the same if thelatitrei

object coincides with the center of the sphere?) The object centroid method is most likely the
best, and it is easy to implement. As Bier and Sloane argue, the other two methods usually
produce unacceptable final renderings.

Bier and Sloane also discuss using an imaginary box rather than a sphere to surround the object
in question. Figure 8.59a shows the six faces of a cube spread out over a texturarmchpget

b) shows the texture wrapped about the cube, which in turn encloses an object. Vertices on the
object can be associated with texture points in the three ways discussed above: the object-
centroid and cube-normal are probably the best choices.

a). texture on 6 faces of box  b). wrapping texture onto

Figure 8.59. Using an enclosing box.

Chapter 8 November 30, 1999 page 39



Practice exercises.

8.5.7. How to associat®, and V,. Surface of revolutio® shown in Figure 8.60 consists of a
sphere resting on a cylinder. The object is surrounded by an imaginary cylinder having a
checkerboard texture pasted on it. Sketch how the texture will look for each of the following
methods of associating texture points to vertices:

a). shrink wrapping;

b). object centroid,;

c). object normal;

Figure 8.60. A surface of revolution surrounded by an imaginary cylinder.

8.5.8. Wrap a texture onto a torusA torus can be viewed as a cylinder that “bends” around

and closes on itself. The torus shown in Figure 8.61 has the parametric representation given by
P(u, v) = ((D + A coqVv)) coqu), (D + A cogqV)) sin(u), A sin(v)). Suppose you decide to

polygonalize the torus by taking vertices based on the sampieZpi/N andv,= 2pj/M, and you

wish to wrap some texture from the unit texture space around this torus. Write code that
generates, for each of the faces, each vertex and its associated texture coosgihates (

Figure 8.61. Wrapping texture about a torus.

8.5.6. Reflection mapping.

The class of techniques known as “reflection mapping” can significantly improve the realism of
pictures, particularly in animations. The basic idea is to see refle@ti@msobject that suggest the
“world” surrounding that object.

The two main types of reflection mapping are called “chrome mapping” and “environment
mapping.” In the case @hrome mappinga rough and usually blurry image that suggests the
surrounding environment is reflected in the object, as you would see in a surface coated with
chrome. Television commercials abound with animations of shiny letters and logos ftyimgl &m

space, where the chrome map includes occasional spotlights for dramatic effect. Figure 8.62 offers
an example. Part a) shows the chrome texture, and part b) shows it reflecting inytrebgdt.

The reflection provides a rough suggestion of the world surrounding the object.

a). chrome map b). scene with chrome mapping
(screen shots)

Figure 8.62. Example of chrome mapping.

In the case oénvironment mapping (first introduced by Blinn and Newell [blinn 76]) a

recognizable image of the surrounding environment is seen reflected in the object. JAleasae
visual cues from such reflections, particularly when the object moves abontof®dnas seen the
classic photographs of an astronaut walking on the moon with the moonscape reflectéaicie his
mask. And in the movies you sometimes see close-ups of a character's reflective dark glasses, in
which the world about her is reflected. Figure 8.63 shows two examples where daafete

reflected in a sphere and a torus. The cafeteria texture is wrapped about a largéaphere t
surrounds the object, so that the texture coordinat€sdorrespond to azimuth and latitude about
the enclosing sphere.

Figure 8.63. Example of environment mapping (courtesy of Haeberli and Segal).

Chapter 8 November 30, 1999 page 40



Figure 8.64 shows the use of a surrounding cube rather than a sphere. Part a) shows the map,
consisting of six images of various views of the interior walls, floor, and ceiling of a room. Part b)
shows a shiny object reflecting different parts of the room. The use of an enclosing cube was
introduced by Greene [greene 86], and generally produces less distorted reflections sban are

with an enclosing sphere. The six maps can be generated by rendering six separate images from t
point of view of the object (with the object itself removed, of course). For each imagdetigynt
camera is set up and the appropriate window is set. Alternatively, the textures can be digitized from
photos taken by a real camera that looks in the six principal directions inside an actual room or
scene.

a). six images make the map b). environment mapping
(screen shots)

Figure 8.64. Environment mapping based on a surrounding cube.

Chrome and environment mapping differ most dramatically from normal texture mapping in an
animation when the shiny object is moving. The reflected image will “flow” over the moving

object, whereas a normal texture map will be attached to the object and move with it. And if a shiny
sphere rotates about a fixed spot a normal texture map spins with the sphere, but a reflpction ma
stays fixed.

How is environment mapping done? What you see at poamt the shiny object is what has arrived

atP from the environment in just the right direction to reflect into your eye. To find thatidirec

trace a ray from the eye B and determine the direction of the reflected ray. Trace this ray to find
where it hits the texture (on the enclosing cube or sphere). Figure 8.65 shows a ray emanating from
the eye to poinP. If the direction of this ray ia and the unit normal & is m, we know from

Equation 8.2 that the reflected ray has directieru — 2@ - m)m. The reflected ray moves in
directionr until it hits the hypothetical surface with its attached texttiie.easiest

computationally to suppose that the shiny object is centered in, and much smaller than, the
enclosing cube or sphere. Then the reflected ray emanates approximately from the object’s center,
and its directiom can be used directly to index into the texture.

Figure 8.65. Finding the direction of the reflected ray.

OpenGL provides a tool to perform approximate environment mapping for the case where the
texture is wrapped about a large enclosing sphere. It is invoked by setting a mapping mode for both
s andt using:

gITexGenf(GL_S,GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
gITexGenf(GL_T,GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);

Now when a verte® with its unit normam is sent down the pipeline, OpenGL calculates a texture
coordinate pairg, t) suitable for indexing into the texture attached to the surrounding sphere. This

is done for each vertex of the face on the object, and the face is drawn as always using interpolated
texture coordinates,(t) for points in between the vertices.

How does OpenGL rapidly compute a suitable coordinate ga)?(As shown in Figure 8.66a it
first finds (in eye coordinates) the reflected directidnsing the formula above), wheuss the
unit vector (in eye coordinates) from the eye to the verter the object, andh is the normal av.

a). b).

Figure 8.66. OpenGL’s computation of the texture coordinates.

It then simply uses the expression:

(s9)= ;(r—g+1),;(r—g +1) (8.24)

Chapter 8 November 30, 1999 page 41



wherep is a mysterious scaling factqy = \/rxz + ry2 +(r, +1)2 . The derivation of this term is

developed in the exercises. We must precompute a texture that shows what you would see of the
environment in a perfectly reflecting sphere, from an eye position far removed from the sphere
[haeberli93]. This maps the part of the environment that lies in the hemisphere behind the eye into a
circle in the middle of the texture, and the part of the environment in the hemisphere of fremt

eye into an annulus around this circle (visualize this). This texture must memeteal if the eye

changes position. The pictures in Figure 8.63 were made using this method.

Simulating Highlights using Environment mapping.

Reflection mapping can be used in OpenGL to produce specular highlights on a surfacereA textu
map is created that has an intense concentrated bright spot. Reflection mapping “paints” this
highlight onto the surface, making it appear to be an actual light source situated in the environment.
The highlight created can be more concentrated and detailed than those created using the Phong
specular term with Gouraud shading. Recall that the Phong term is computed oalyeatities of

a face, and it is easy to “miss” a specular highlight that falls between two vertices. With reflection
mapping the coordinates, €) into the texture are formed at each vertex, and then interpolated in
between. So if the coordinates indexed by the vertices happen to surround the bright spot, the spot
will be properly rendered inside the face.

Practice Exercise 8.5.9. OpenGL’s computation of texture coordinates for envinment
mapping. Derive the result in Equation 8.24. Figure 8.66b shows in cross-sectional view the vectors
involved (in eye coordinates). The eye is looking from a remote location in the directid). (8,0,
sphere of radius 1 is positioned on the negative z-axis. Suppose light comes in from direction
hitting the sphere at the point §, 2. The normal to the sphere at this pointisy( z), which also
must be just right so that light coming alangs reflected into the direction (0, 0, 1). This means
the normal must be half-way betwereand (0, 0, 1), or must be proportional to their sumxsg, (
2) =K(r,, r,, r+1) for someK.

a). Show that the normal vector has unit lengi i$ 1, wherep is given as in Equation 8.24.

b). Show that thereforex,(y) = (r./p, r,/p).

c). Suppose for the moment that the texture image extends from —1 xahdrfrom —1 to 1 iry.
Argue why what we want to see reflected at the paint, ) is the value of the texture image &t (
y). d). Show that if instead the texture uses coordinates from 0 to 1 — as is true wiBLOpiat
we want to see ak(y) the value of the texture image attj given by Equation 8.24.

8.6. Adding Shadows of Objects.

Shadows make an image much more realistic. From everyday experience the whjeoheasts a
shadow on another object gives important visual cues as to how they are positioned. Figure 8.67
shows two images involving a cube and a sphere suspended above a plane. Shadows are absent in
part a, and it is impossible to see how far above the plane the cube and sphere are floating. By
contrast, the shadows seen in part b give useful hints as to the positions of the objects. A shadow
conveys a lot of information; it's as if you are getting a second look at the object (from the

viewpoint of the light source).

a). with no shadows b). with shadows
(screen shots)

Figure 8.67. The effect on shadows.

In this section we examine two methods for computing shadows: one is based on “painting”
shadows as if they were texture, and the other is an adaptation of the depth buffer approach for
hidden surface removal. In Chapter 14 we see that a third method arises naturally when raytracing.
There are many other techniques, well surveyed in [watt92, crow77, woo90, bergeron86].

8.6.1. Shadows as Texture.

This technique displays shadows that are cast onto a flat surface by a point light source. The
problem is to compute the shape of the shadow that is cast. Figure 8.68a shows a box casting a
shadow onto the floor. The shape of the shadow is determined by the projections of each of the
faces of the box onto the plane of the floor, using the source as the center of projection. In fact the
shadow is the unidd of the projections of the six faces. Figure 8.68b shows the superposed

13 the set theoretic union: A point is in the shadow if it is in one or more of the projections.

Chapter 8 November 30, 1999 page 42



projections of two of the faces: the top face projectspoand the front face téront’. (Sketch the
projections of the other four faces, and see that their union is the required Shpdow

a). b).

Figure 8.68. Computing the shape of a shadow.

This is the key to drawing the shadow. After drawing the plane using ambient, diffdsspecular

light contributions, draw the six projections of the box’s faces on the plane using only ambient light.
This will draw the shadow in the right shape and color. Finally draw the box. (If the box is near the
plane parts of it might obscure portions of the shadow.)

Building the “projected” face:

To make the new fade produced byF, project each of its vertices onto the plane in question. We
need a way to calculate these vertex positions on the plane. Suppose, as in Figure 8.68a, that the
plane passes through pofktand has normal vector Consider projecting vertex, producing

pointV'. The mathematics here are familiar: Paifhis the point where the ray from the sourc&at
throughV hits the plane. As developed in the exercises, this point is:

Vi =S+ (- gnXAS (8.25)

nxV-9
The exercises show how this can be written in homogeneous coordingtésas a matrix, which
is handy for rendering engines, like OpenGL, that support convenient matrix multiplication.

Practice Exercises.

8.6.1. Shadow shapesSuppose a cube is floating above a plane. What is the shape of the cube’s
shadow if the point source lies a). directly above the top face? b). along a main diagonal of the cube
(as in an isometric view)? Sketch shadows for a sphere and for a cylinder floating above a plane for
various source positions.

8.6.2. Making the “shadow” face a). Show that the ray from the source p@&ititrough vertey/

hits the planen P - A) =0att*=nX A- §/ n &V- $; b). Show that this defines the hit
pointV’ as given in Equation 8.25.
8.6.3. It's equivalent to a matrix multiplication. a). Show that the expression ¥rin Equation

8.25 can be written as a matrix multiplicatidfi:= M(\,, v, Vz,l)T, whereM is a 4 by 4 matrix

b). Express the terms df in terms ofA, S, andn.

8.6.2. Shadows using a shadow buffer.

A rather different method for drawing shadows uses a variant of the depth buffer that performs
hidden surface removal. It uses an auxiliary second depth buffer, cathedlav buffer, for each
light source. This requires a lot of memory, but this approach is not restricted hgy chstdows
onto planar surfaces.

The method is based on the principle that any points in the scene that are “hidden” from the light
source must be in shadow. On the other hand, if no object lies between a point and the light source
the point is not in shadow. The shadow buffer contains a “depth picture” of the sceneefoomth

of view of the light source: each of its elements records the distance from the sourcddeetbte

object in the associated direction.

Rendering is done in two stages:

1). Shadow buffer loading The shadow buffer is first initialized with 1.0 in each element, the

largest pseudodepth possible. Then, using a camera positioned at the light source, each of the faces
in the scene is scan converted, but only the pseudodepth of the point on the face is tested. Each
element of the shadow buffer keeps track of the smallest pseudodepth seen so far.

To be more specific, Figure 8.69 shows a scene being viewed by the usual “eye camera” as well as
a “source camera” located at the light source. SupposePp@rin the ray from the source through

14 You need to form the union of the projections of only the three “front” faces: those facirg tbedight
source. (Why?)

Chapter 8 November 30, 1999 page 43



shadow buffer “pixel'd[i][j], and that poinB on the pyramid is also on this ray. If the pyramid is
presend[i][j] contains the pseudodepthBpif it happens to be absedi][j] contains the
pseudodepth tB.

Figure 8.69. Using the shadow buffer.

Note that the shadow buffer calculation is independent of the eye position, so imatianwhere
only the eye moves the shadow buffer is loaded only once. The shadow buffer must b&atedalcu
however, whenever the objects move relative to the light source.

2). Render the sceneEach face in the scene is rendered using the eye camera as usual. Suppose the
eye camera “sees” poiRtthrough pixelp[c][r]. When rendering[c][r] we must find®:

the pseudodepth from the source te;
the index locationi][j] in the shadow buffer that is to be tested,;
the valued[i][j] stored in the shadow buffer.

If d[i][j] is less tharD the pointP is in shadow, angd[c][r] is set using only ambient light.
OtherwiseP is not in shadow anpl[c][r] is set using ambient, diffuse, and specular light.

How are these steps done? As described in the exercises, to each point on the eye camera viewplane
there corresponds a point on the source camera viewpldfor each screen pixel this

correspondence is invoked to find the pseudodepth from the solrasstwell as the index][j]

that yields the minimum pseudodepth stored in the shadow buffer.

Practice Exercises.

8.6.4. Finding pseudodepth from the sourc&uppose the matricéd, andM_ map the poinP in

the scene to the appropriate (3D) spots on the eye camera’s viewplane and the source camera’s
viewplane, respectively. a). Describe how to establish a “source camera” and how to find the
resulting matrixM_ b). Find the transformation that, given positi@nyj on the eye camera’s
viewplane produces the positianjj and pseudodepth on the source camera’s viewplane.

c). Once i j) are known, how is the indeK[j] and the pseudodepth Bfon the source camera
determined?

8.6.5. Extended Light sourcesWe have considered only point light sources in this chapter.
Greater realism is provided by modeling extended light sources. As suggested in Figure 8.70a such
sources cast more complicated shadows, havingrdoma within which no light from the source is
seen, and a lightgrenumbra within which a part of the source is visible. In part b) a glowing
sphere of radius 2 shines light on a unit cube, thereby casting a shadow on ive Malke an
accurate sketch of the umbra and penumbra that is observed on the wall. As you might expect,
algorithms for rendering shadows due to extended light sources are complex. See [watt92] for a
thorough treatment.

a). umbra and penumbra b). example to sketch

Figure 8.70. Umbra and penumbra for extended light sources.

8.7. Summary

Since the beginning of computer graphics there has been a relentless quest for gresater reali
when rendering 3D scenes. Wireframe views of objects can be drawn very rapidly but are
difficult to interpret, particularly if several objects in a scene overlap. Realism is greatly
enhanced when the faces are filled with some color and surfaces that should be hidden are
removed, but pictures rendered this way still do not give the impressionectolgsiding in a
scene, illuminated by light sources.

15 Of course, this test is made onlyPifs closer to the eye than the value stored in the normal depth
buffer of the eye camera.

16 Keep in mind these are 3D points: 2 position coordinates on the viewplane, and pseudodepth.

Chapter 8 November 30, 1999 page 44



What is needed is a shading model, that describes how light reflects off a surface depending
the nature of the surface and its orientation to both light sources and the camera’s eye. The
physics of light reflection is very complex, so programmers have developed a number of
approximations and tricks that do an acceptable job most of the time, and are reasonably
efficient computationally. The model for the diffuse component is the one mostydbaseld

on reality, and becomes extremely complex as more and more ingredients are considered.
Specular reflections are not modeled on physical principles at all, but can do anegtenoét
recreating highlights on shiny objects. And ambient light is purely an abstraction, a shortcut
that avoids dealing with multiple reflections from object to object, and prevents shadows from
being too deep.

Even simple shading models involve several parameters such as reflectiorierusffic

descriptions of a surface’s roughness, and the color of light sources. OpenGL provides ways to
set many of these parameters. There is little guidance for the designer in choosing the values of
these parameters; they are often determined by trial and error until the final rendered picture
looks right.

In this chapter we focused on rendering of polygonal mesh models, so the basic task was to
render a polygon. Polygonal faces are particularly simple and are described by a modest
amount of data, such as vertex positions, vertex normals, surface colors and material. In
addition there are highly efficient algorithms for filling a polygonal face with calculated colors,
especially if it is known to be convex. And algorithms can capitalize on the flatness of a
polygon to interpolate depth in an incremental fashion, making the depth buffer hidden surface
removal algorithm simple and efficient.

When a mesh model is supposed to approximate an underlying smooth surface the appearance
of a face’s edges can be objectionable. Gouraud and Phong shading provide ways to draw a
smoothed version of the surface (except along silhouettes). Gouraud shading is very fast but
does not reproduce highlights very faithfully; Phong shading produces more realistic renderings
but is computationally quite expensive.

The realism of a rendered scene is greatly enhanced by the appearance of texturing on object
surfaces. Texturing can make an object appear to be made of some material such as brick or
wood, and labels or other figures can be pasted onto surfaces. Texture maps can be used to
modulate the amount of light that reflects from an object, or as “bump maps” that give a
surface a bumpy appearance. Environment mapping shows the viewer an impression of the
environment that surrounds a shiny object, and this can make scenes more neatistidarly

in animations. Texture mapping must be done with care, however, using proper interpolation
and antialiasing (as we discuss in Chapter 10).

The chapter closed with a description of some simple methods for producing shadows of
objects. This is a complex subject, and many techniques have been developed. The two
algorithms described provide simple but partial solutions to the problem.

Greater realism can be attained with more elaborate techniques such as ray tracing and
radiosity. Chapter 14 develops the key ideas of these techniques.

8.8. Case Studies.

8.8.1. Case Study 8.1. Creating shaded objects using OpenGL

(Level of Effort: Il beyond that of Case Study 7.1). Extend Case Study 7.1 that flies a camera
through space looking at various polygonal mesh objects. Extend it by establishing a point light
source in the scene, and assigning various material properties to the meshes. inclede a
diffuse, and specular light components. Provide a keystroke that switches between flat and
smooth shading

8.8.2. Case Study 8.2. The Do-it-yourself graphics pipeline.

(Level of Effort: 11l) Write an application that reads a polygonal mesh model from a file as
described in Chapter 6, defines a camera and a point light source, and renders the mesh object
using flat shading with ambient and diffuse light contributions. Only gray scale intensities need
be computed. For this project dot use OpenGL'’s pipeline; instead create your own. Define
modelview, perspective, and viewport matrices. Arrange that vertices can bd grassigh the

Chapter 8 November 30, 1999 page 45



first two matrices, have the shading model applied, followed by perspective division (no
clipping need be done) and by the viewport transformation. Each vertex emerges as the array
{x, v, z, b} wherex andy are screen coordinatesis pseudodepth, arilis the grayscale

brightness of the vertex. Use a tool that draws filled polygons to do the actual rendering: if you
use OpenGL, use only its 2D drawing (and depth buffer) components. Experiment with
different mesh models, camera positions, and light sources to insure that lighting is done

properly.

8.8.3. Case Study 8.3. Add Polygon Fill and Depth Buffer HSR.

(Level of Effort: Il beyond that needed for Case Study 8.2.) Implement your own depth buffer,
and use it in the application of Case Study 8.2. This requires the development of a polygon fill
routine as well - see Chapter 10.

8.8.4. Case Study 8.4. Texture Rendering.

(Level of Effort: Il beyond that of Case Study 8.1). Enhance the program of Case Study 8.1 so
that textures can be painted on the faces of the mesh objects. Assemble a routine that can read a
BMP image file and attach it to an OpenGL texture object. Experiment by putting five wliffere
image textures and one procedural texture on the sides of a cube, and arranging to have the
cube rotate in an animation. Provide a keystroke that lets the user switch between linear
interpolation and correct interpolation for rendering textures.

8.8.5. Case Study 8.5. Applying Procedural 3D textures.

(Level of Effort: Ill) An interesting effect is achieved by making an object appear to be carved
out of some solid material, such as wood or marble. Plate ??? shows a (raytraced) vase carved
out of marble, and Plate ??? shows a box apparently made of wood. 3D textures are discussed
in detail in Chapter 14 in connection with ray tracing, but it is also possible to map “slices” of a
3D texture onto the surfaces of an object, to achieve a convincing effect.

Suppose you have a texture functi(g, y, z) which attaches different intensities or colors to
different points in 3D space. For instarg(g, y, z2) might represent how “inky” the sea is at

position §, y, 2). As you swim around you encounter a varying inkiness right before your eyes. If
you freeze a block of this water and carve some shape out of the block, the surface of the shape
will exhibit a varying inkinessB() can be vector-valued as well: providing three values at each

(%, ¥, 2), which might represent the diffuse reflection coefficients for red, green, and blue light of
the material at each point in space. It's not hard to construct interesting furigflions

a). A 3D black and white checkerboard with 125 blocks is formed using:
B(X, ¥y, 2 = ((int)(5x) + (int)(By) + (int)(52) % 2 asx, y, zvary from O to 1.

b). A “color cube” has six different colors at its vertices, with a continuously varyiog aol
points in between. Just uBéx, y, 2) = (X, y, 2 wherex, y, andz vary from O to 1. The vertex at
(0, 0, 0) is black, that at (1, 0, 0) is red, etc.

c). All of space can be filled with such cubes stacked upon one anotheB(sipgz) =
(fract(x), fract(y), fract(2)) wherefract(x) is the fractional part of the valxe

Methods for creating wood grain and turbulent marble are discussed in Chapter 14. They can be
used here as well.

In the present context we wish to paste such texture onto surfaces. To do this a bitmap is
computed usin@() for each surface of the object. If the object is a cube, for instance, six
different bitmaps are computed, one for each face of the cube. Suppose a certain face of the
cube is characterized by the planar surfaeeat +b s fors tin 0 to 1. Then use as texture
B(P,+at+bs P, +at+bs P,+at +bys). Notice that if there is any coherence to the pattern
B() (so nearby points enjoy somewhat the same inkiness or color), then nearby points on
adjacent faces of the cube will also have nearly the same color. This makes the object truly
look like it is carved out of a single solid material.

Chapter 8 November 30, 1999 page 46



Extend Case Study 8.4 to include pasting texture like this onto the faces of a cube and an
icosahedron. Use a checkerboard texture, a color cube texture, and a wood grain texture (as
described in Chapter 14).

Form a sequence of images of a textured cube, where the cube moves slightly through the
material from frame to frame. The object will appear to “slide through” the texture in which it
is imbedded. This gives a very different effect from an object moving with its textureeattach
Experiment with such animations.

8.8.6. Case Study 8.6. Drawing Shadows.

(Level of Effort:Ill) Extend the program of Case Study 8.1 to produce shadows. Make one of
the objects in the scene a flat planar surface, on which is seen shadows of other objects.
Experiment with the “projected faces” approach. If time permits, develop as well the shadow
buffer approach.

8.8.7. Case Study 8.7. Extending SDL to Include Texturing.

(Level of Effort:Ill) The SDL scene description language does not yet include a means to
specify the texture that one wants applied to each face of an object. The kiaxtare  is
currently in SDL, but does nothing when encountered in a file. Do a careful study of the code in
the Scene andShape classes, available on the book’s internet site, and design an approach
that permits a syntax such as

texture giraffe.omp pl p2 p3 p4

to create a texture from a stored image (lgimaffe  .bmp) and paste it onto certain faces of
subsequently defined objects. Determine how many paranetéuse  should require, and
how they should be used. ExtethéiwOpenGL () for two or three shapes so that it properly
pastes such texture onto the objects in question.

8.9. For Further Reading

Jim Blinn’s two JIM BLINN'S CORNER books: A TRIP DOWN THE GRAPHICS PIPELINE [blinn96]
and DIRTY PIXELS [blinn98ffer several articles that lucidly explain the issues of drawing

shadows and the hyperbolic interpolation used in rendering texture. Heckbert’'s “Survey of Texture
Mapping” [heckbert86] gives many interesting insights into this difficult topic. The p&apass

Shadows and Lighting Effects Using Texture Mapping” by Segal et al [segal92] and “Texture
Mapping as a Fundamental Drawing Primitive” by Haeberli and Segal [haeberli93] (also available
on-line: http://www.sgi.com/grafica/texmaypprovide excellent background and context.

Chapter 8 November 30, 1999 page 47



	Chapter 4. Vectors Tools for Graphics.
	
	Goals of the Chapter
	Preview

	4.1 Introduction.
	4.2. Review of Vectors.
	4.2.1. Operations with vectors.
	4.2.2. Linear Combinations of Vectors.
	Affine Combinations of Vectors.
	Convex Combinations of Vectors.

	4.2.3. The Magnitude of a vector, and unit vectors.

	4.3. The Dot Product.
	4.3.1. Properties of the Dot Product
	4.3.2. The Angle Between Two Vectors.
	4.3.3. The Sign of b·c, and Perpendicularity.
	4.3.4. The 2D ﬁPerpﬂ Vector.
	4.3.5. Orthogonal Projections, and the Distance from a Point to a Line.
	4.3.12. How far is it? How far from the line through (2, 5) and ( 4, -1) does the point (6, 11) lie? Check your result on graph paper.
	4.3.6. Applications of Projection: Reflections.

	4.4. The Cross Product of Two Vectors.
	4.4.1. Geometric Interpretation of the Cross Product.
	4.4.2. Finding the Normal to a Plane.

	4.5. Representations of Key Geometric Objects.
	4.5.1. Coordinate Systems and Coordinate Frames.
	4.5.2. Affine Combinations of Points.
	4.5.3. Linear Interpolation of two points.
	4.5.3. ﬁTweeningﬂ for Art and Animation.
	4.5.4. Preview: Quadratic and cubic tweening, and Bezier Curves.
	4.5.5. Representing Lines and Planes.
	Lines in 2D and 3D space.
	Planes in 3D space.
	Planar Patches.


	4.6. Finding the Intersection of two Line Segments.
	4.6.1. Application of Line Intersections: the circle through three points.

	4.7. Intersections of Lines with Planes, and Clipping.
	4.8. Polygon Intersection Problems.
	4.8.1. Working with convex polygons and polyhedra.
	4.8.2. Ray Intersections and Clipping for Convex Polygons.
	4.8.3. The Cyrus-Beck Clipping Algorithm.
	4.8.4. Clipping against arbitrary polygons.
	4.8.5. More Advanced Clipping.

	4.9. Summary of the Chapter.
	4.10. Case Studies.
	4.10.1. Case Study 4.1: Animation with Tweening.
	4.10.2. Case Study 4.2. Circles Galore.
	4.10.3. Case Study 4.3. Is point Q inside convex polygon P?
	4.10.4. Case Study 4.4. Reflections in a Chamber (2D Ray Tracing)
	4.10.5. Case Study 4.5. Cyrus-Beck Clipping.
	4.10.6. Case Study 4.6. Clipping a polygon against a convex polygon Š  Sutherland Hodgman Clipping.
	4.10.7. Case Study 4.7. Clipping a Polygon against another Š Weiler Atherton Clipping.
	4.10.8. Case Study 4.8. Boolean Operations on Polygons.


	4.11. For Further Reading
	Chapter 5. Transformations of Objects
	
	
	
	
	ﬁMinus times minus is plus, the reason for this we need not discussﬂ

	Many of the brightly colored tile-covered walls and floors of the



	Goals of the Chapter
	Preview.
	5.1. Introduction.
	5.2. Introduction to Transformations.
	5.2.1. Transforming Points and Objects.
	5.2.2. The Affine Transformations.
	5.2.3. Geometric Effects of Elementary 2D Affine Transformations.
	Translation.
	Scaling.
	Rotation.
	Shearing.

	5.2.4. The Inverse of an Affine Transformation
	5.2.5. Composing Affine Transformations.
	5.2.6. Examples of Composing 2D Transformations.
	5.2.8. Some Useful Properties of Affine Transformations.
	4). The Columns of the Matrix reveal the Transformed Coordinate Frame.
	5). Relative Ratios Are Preserved.
	7). Every Affine Transformation is Composed of Elementary Operations.


	5.3. 3D Affine Transformations.
	5.3.1. The Elementary 3D Transformations.
	Translation.
	Scaling.
	Shearing.
	Rotations.

	5.3.2. Composing 3D Affine Transformations.
	5.3.3. Combining Rotations.
	5.3.4. Summary of Properties of 3D Affine Transformations.

	5.4. Changing Coordinate Systems.
	5.5. Using Affine Transformations in a Program.
	5.5.1. Saving the CT for later use.

	5.6. Drawing 3D Scenes with OpenGL
	5.6.1. An overview of the viewing process and the graphics pipeline.
	5.6.2. Some OpenGL Tools for Modeling and Viewing.
	5.6.3. Drawing Elementary Shapes Provided by OpenGL
	5.6.4. Reading a Scene Description from a File.

	5.7. Summary of the Chapter.
	5.8 Case Studies.
	Case study 5.1. Doing your own transforming by the CT in Canvas.
	Case Study 5.2.  Draw the star of Fig 5.39. using multiple rotations.
	Case Study 5.3. Decomposing a 2D Affine Transformation.
	c). Is a shear ﬁfundamentalﬂ?

	Case Study 5. 4. Generalized 3D Shears.


	Case Study 5.5. Rotation about an Axis: The Constructive Approach.
	Case Study 5.6. Decomposing 3D Affine Transformations.
	Case Study 5.7. Drawing 3D scenes described by SDL.
	5.9. For Further Reading
	CHAP 6. Modeling Shapes with Polygonal Meshes
	
	Goals of the Chapter
	Preview

	6.1 Introduction.
	6.2. Introduction to Solid Modeling with Polygonal Meshes.
	6.2.1. Defining a polygonal mesh.
	6.2.2. Finding the normal vectors.
	6.2.3. Properties of Meshes.
	6.2.4. Mesh models for non-solid objects.
	6.2.5. Working with Meshes in a Program.

	6.3. Polyhedra.
	6.3.1. Prisms and Antiprisms.
	6.3.2. The Platonic Solids.
	Ł The Tetrahedron
	Ł The Icosahedron
	6.3.3. Other interesting Polyhedra.
	Figure 6.33. The Truncated Cube.

	6.4. Extruded Shapes
	6.4.1. Creating Prisms.
	6.4.2. Arrays of Extruded Prisms - ﬁbrick layingﬂ.
	6.4.3. Extrusions with a ﬁtwistﬂ.
	6.4.4. Building Segmented Extrusions - Tubes and Snakes.
	6.4.5. ﬁDiscretelyﬂ Swept Surfaces of Revolution.

	6.5. Mesh Approximations to Smooth objects.
	6.5.1. Representations for Surfaces.
	6.5.2. The Normal Vector to a Surface.
	6.5.3. The Effect of an Affine Transformation.
	6.5.4.  Three ﬁgenericﬂ shapes: the sphere, cylinder, and cone.
	6.5.5. Forming a Polygonal Mesh for a Curved Surface.
	6.5.6.  Ruled Surfaces.
	Cones.
	Cylinders.
	Bilinear Patches.
	Other ruled surfaces.
	Bilinearly blended Surfaces - Coons Patches.
	6.5.7. Surfaces of Revolution.
	6.5.8.  The Quadric Surfaces.
	Some Notes on the Quadric Surfaces.
	6.5.9.  The Superquadrics.
	6.5.10. Tubes Based on 3D Curves.
	6.5.11. Surfaces based on Explicit Functions of Two Variables.

	6.6. Summary
	6.7. Case Studies.
	6.7.1. Case Study 6.1. Meshes stored in Files.
	6.7.2. Case Study 6.2. Derivation of the Newell Method.
	6.7.3. Case Study 6.3. The Prism.
	6.7.4. Case Study 6.4. Prism Arrays and Extruded Quad-strips.
	6.7.5. Case Study 6.5. Tubes and Snakes based on a Parametric Curve.
	6.7.6. Case Study 6.6.  Building Discrete-Stepped Surfaces of Revolution.
	6.7.7. Case Study 6.7.  On Edge Lists and Wireframe Models.


	6.8. For Further Reading
	CHAPTER 7 Three-Dimensional Viewing
	
	Ł To see how each operation in the OpenGL graphics pipeline operates, and why it is used.
	Preview

	7.1 Introduction.
	7.2. The Camera Revisited.
	7.2.1. Setting the View Volume.
	7.2.2. Positioning and pointing the camera.

	7.3 Building a Camera in a Program.
	7.3.1. ﬁFlyingﬂ the Camera.

	7.4. Perspective Projections of 3D Objects
	7.4.1. Perspective Projection of a Point.
	7.4.2. Perspective Projection of a Line.


	7.4.3. Incorporating Perspective in the Graphics Pipeline.
	Chapter 8  Rendering Faces for Visual Realism.
	
	Goals of the Chapter
	Preview.

	8.1. Introduction.
	8.2. Introduction to Shading Models.
	8.2.1. Geometric Ingredients for Finding Reflected Light.
	Herbert George Ponting, The Sleeping Bag

	8.2.2. Computing the Diffuse Component.
	8.2.3. Specular Reflection.
	8.2.4. The Role of Ambient Light.
	8.2.5. Combining Light Contributions.
	8.2.6. Adding Color.
	8.2.7. Shading and the Graphics pipeline.
	8.2.8. Using Light Sources in OpenGL.
	8.2.9. Working with Material Properties in OpenGL.
	8.2.10. Shading of Scenes Specified by SDL.

	8.3. Flat Shading and Smooth Shading.
	8.3.1. Flat Shading.
	8.3.2.Smooth Shading.

	8.4. Adding Hidden Surface Removal
	8.4.1.The Depth Buffer Approach.

	8.5. Adding Texture to Faces.
	8.5.1. Pasting the Texture onto a Flat Surface.
	8.5.2. Rendering the Texture.
	8.5.3. What does the texture modulate?
	8.5.4. A Texturing Example using OpenGL.
	8.5.5. Wrapping texture on curved surfaces.
	8.5.6. Reflection mapping.

	8.6. Adding Shadows of Objects.
	8.6.1. Shadows as Texture.
	8.6.2. Shadows using a shadow buffer.

	8.7. Summary
	8.8. Case Studies.
	8.8.1. Case Study 8.1. Creating shaded objects using OpenGL
	8.8.2. Case Study 8.2. The Do-it-yourself graphics pipeline.
	8.8.3. Case Study 8.3. Add Polygon Fill and Depth Buffer HSR.
	8.8.4. Case Study 8.4. Texture Rendering.
	8.8.5. Case Study 8.5. Applying Procedural 3D textures.
	8.8.6. Case Study 8.6. Drawing Shadows.
	8.8.7. Case Study 8.7. Extending SDL to Include Texturing.



